2 sgk toán 8 tập 1 trang 41 năm 2024

  • 2 sgk toán 8 tập 1 trang 41 năm 2024
  • * Lớp 1
    • Lớp 2
    • Lớp 3
    • Lớp 4
    • Lớp 5
    • Lớp 6
    • Lớp 7
    • Lớp 8
    • Lớp 9
    • Lớp 10
    • Lớp 11
    • Lớp 12
    • Thi chuyển cấp
    • 2 sgk toán 8 tập 1 trang 41 năm 2024
      • Mầm non

        • Tranh tô màu
        • Trường mầm non
        • Tiền tiểu học
        • Danh mục Trường Tiểu học
        • Dạy con học ở nhà
        • Giáo án Mầm non
        • Sáng kiến kinh nghiệm
      • Học tập

        • Giáo án - Bài giảng
        • Luyện thi
        • Văn bản - Biểu mẫu
        • Viết thư UPU
        • An toàn giao thông
        • Dành cho Giáo Viên
        • Hỏi đáp học tập
        • Cao học - Sau Cao học
        • Trung cấp - Học nghề
        • Cao đẳng - Đại học
      • Hỏi bài

        • Toán học
        • Văn học
        • Tiếng Anh
        • Vật Lý
        • Hóa học
        • Sinh học
        • Lịch Sử
        • Địa Lý
        • GDCD
        • Tin học
      • Trắc nghiệm

        • Trắc nghiệm IQ
        • Trắc nghiệm EQ
        • KPOP Quiz
        • Đố vui
        • Trạng Nguyên Toàn Tài
        • Trạng Nguyên Tiếng Việt
        • Thi Violympic
        • Thi IOE Tiếng Anh
        • Kiểm tra trình độ tiếng Anh
        • Kiểm tra Ngữ pháp tiếng Anh
      • Tiếng Anh

        • Luyện kỹ năng
        • Giáo án điện tử
        • Ngữ pháp tiếng Anh
        • Màu sắc trong tiếng Anh
        • Tiếng Anh khung châu Âu
        • Tiếng Anh phổ thông
        • Tiếng Anh thương mại
        • Luyện thi IELTS
        • Luyện thi TOEFL
        • Luyện thi TOEIC
      • Khóa học trực tuyến

        • Tiếng Anh cơ bản 1
        • Tiếng Anh cơ bản 2
        • Tiếng Anh trung cấp
        • Tiếng Anh cao cấp
        • Toán mầm non
        • Toán song ngữ lớp 1
        • Toán Nâng cao lớp 1
        • Toán Nâng cao lớp 2
        • Toán Nâng cao lớp 3
        • Toán Nâng cao lớp 4

Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

\({x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}}\) tại x=99,75.

Phương pháp:

Sử dụng các hằng đẳng thức đáng nhớ để rút gọn

\({(a+b)^2} = a^2 + 2ab +b^2\)

Sau đó, ta thay x vào biểu thức để tính giá trị của biểu thức.

Lời giải:

\({x^2} + \dfrac{1}{2}x + \dfrac{1}{{16}} = {x^2} + 2.x.\dfrac{1}{4} + {\left( {\dfrac{1}{4}} \right)^2} = {\left( {x + \dfrac{1}{4}} \right)^2}\)

Thay x=99,75 vào biểu thức ta được: \({\left( {x + \dfrac{1}{4}} \right)^2} = {\left( {99,75 + 0,25} \right)^2} = {100^2} = 10000\).

Bài 2.17 trang 41 sách giáo khoa Toán 8 Kết nối tri thức tập 1

Chứng minh đẳng thức \({\left( {10a + 5} \right)^2} = 100a\left( {a + 1} \right) + 25\). Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.

Áp dụng: Tính \({25^2};{35^2}\).

Phương pháp:

- Sử dụng các hằng đẳng thức đáng nhớ để phân tích VT

\({(a+b)^2} = a^2 + 2ab +b^2\)

- Sau đó, ta chứng minh VT = VP

- Sau đó giải để tính được \({25^2};{35^2}\)

Lời giải:

Ta có (10a + 5)2 = (10a)2 + 2 . 10a . 5 + 52

\= 100a2 + 100a + 25 = 100a(a + 1) + 25.

Từ đó ta rút ra quy tắc tính nhẩm bình phương của một số có tận cùng là 5 là:

Bình phương của một số tự nhiên có chữ số tận cùng là 5 bằng 100 lần tích của số tạo bởi các chữ số trước số tận cùng với số liền sau của số tạo bởi các chữ số trước số tận cùng rồi cộng với 25.

Áp dụng:

• 252 = (10 . 2 + 5)2 = 100 . 2 . (2 + 1) + 25 = 100 . 2 . 3 + 25

\= 600 + 25 = 625;

• 352 = (10 . 3 + 5)2 = 100 . 3 . (3 + 1) + 25 = 100 . 3 . 4 + 25

\= 1 200 + 25 = 1 225.

Bài 2.18 trang 41 sách giáo khoa Toán 8 Kết nối tri thức tập 1

Tính nhanh giá trị của các biểu thức:

  1. \({x^3} + 3{x^2} + 3x + 1\) tại x=99.
  1. \({x^3} - 3{x^2}y + 3x{y^2} - {y^3}\) tại x=88 và y=-12.

Phương pháp:

Sử dụng các hằng đẳng thức đáng nhớ để rút gọn

  1. \({\left( {a+b} \right)^3} = {a}^3 + 3.{a}^2.b + 3.{a}.{{b}^2} + {{b}^3}\)
  1. \({\left( {a-b} \right)^3} = {a}^3 - 3.{a}^2.b + 3.{a}.{{b}^2} - {{b}^3}\)

Sau đó thay x vào biểu thức để tính giá trị biểu thức

Lời giải:

  1. \({x^3} + 3{x^2} + 3x + 1 = {\left( {x + 1} \right)^3}\)

Thay x=99 vào biểu thức ta được \({\left( {99 + 1} \right)^3} = {100^3} = 1000000\).

  1. \({x^3} - 3{x^2}y + 3x{y^2} - {y^3} = {\left( {x - y} \right)^3}\)

Thay x=88 và y=-12 vào biểu thức ta được \({\left[ {88 - \left( { - 12} \right)} \right]^3} = {100^3} = 1000000\).

Bài 2.19 trang 41 sách giáo khoa Toán 8 Kết nối tri thức tập 1

Rút gọn biểu thức sau:

  1. \({\left( {x - 2} \right)^3} + {\left( {x + 2} \right)^3} - 6x\left( {x + 2} \right)\left( {x - 2} \right)\)
  1. \({\left( {2x - y} \right)^3} + {\left( {2x + y} \right)^3}\).

Phương pháp:

Sử dụng các hằng đẳng thức đáng nhớ để khai triển

\({\left( {a+b} \right)^3} = {a}^3 + 3.{a}^2.b + 3.{a}.{{b}^2} + {{b}^3}\)

\({\left( {a-b} \right)^3} = {a}^3 - 3.{a}^2.b + 3.{a}.{{b}^2} - {{b}^3}\)

Lời giải:

  1. (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2)

\= [(x – 2) + (x + 2)] . [(x – 2)2 – (x – 2).(x + 2) + (x + 2)2] – 6x(x2 – 4)

\= (x – 2 + x + 2).[x2 – 4x + 4 – (x2 – 4) + x2 + 4x + 4] – 6x(x2 – 4)

\= 2x.(2x2 + 8 – x2 + 4) – 6x(x2 – 4)

\= 2x(x2 + 12) – 6x(x2 – 4)

\= 2x3 + 24x – 6x3 + 24x

\= – 4x3 + 48x.

  1. (2x – y)3 + (2x + y)3

\= (2x)3 – 3 . (2x)2 . y + 3 . 2x . y2 – y3 + (2x)3 + 3 . (2x)2 . y + 3 . 2x . y2 + y3

\= (2x)3 + 3 . 2x . y2 + (2x)3 + 3 . 2x . y2

\= 8x3 + 6xy2 + 8x3 + 6xy2 = 16x3 + 12xy2.

Bài 2.20 trang 41 sách giáo khoa Toán 8 Kết nối tri thức tập 1

Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\).

Áp dụng, tính \({a^3} + {b^3}\) biết \(a + b = 4\) và \(ab = 3\).

Phương pháp:

Sử dụng các hằng đẳng thức đáng nhớ để khai triển VP

\({\left( {a+b} \right)^3} = {a}^3 + 3.{a}^2.b + 3.{a}.{{b}^2} + {{b}^3}\)

Sau đó chứng minh VP = VT.

Từ đó, thay dữ kiện đề bài để tính giá trị biểu thức \({a^3} + {b^3}\)

Lời giải:

\(\begin{array}{l}VP = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) = \left( {{a^3} + 3{a^2}b + 3a{b^2} + {b^3}} \right) - \left( {3ab.a + 3ab.b} \right)\\ = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - 3{a^2}b - 3a{b^2}\\ = {a^3} + {b^3} = VT\end{array}\)

Vậy \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) = {4^3} - 3.3.4 = 28\).

Bài 2.21 trang 41 sách giáo khoa Toán 8 Kết nối tri thức tập 1

Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức \(S = 200{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.