Cách giai bất phương trình 4 an

I. Định nghĩa về bất phương trình

1. Dạng tổng quát

f[x]g[x],f[x]≤g[x],f[x]≥g[x]

Ví dụ cho BPT4.x+2>0nghiệm đúng với mọi số thựcx>−0.5. Ta có tập nghiệm: x∈R|x|>−0.5=[0.5;∞]

2. Phương pháp giải bất phương trình lớp 10

* Bất phương trình bậc nhất một ẩn

Là bất phương trình dạng:a.x+b>0

Trường hợpa # 0

- Nếua> 0, tập nghiệm là:

- Nếua< 0, tập nghiệm là:

Trường hợpa=0

- Nếub> 0, Phương trình vô số nghiệm.

- Nếub< 0, Phương trình vô nghiệm.

* Cách giải bất phương trình bậc 2một ẩn

Là BPT dạng:a.x2 + b.x + c > 0 với a # 0

ĐặtΔ = b2 − 4.a.c. Ta có các trường hợp sau:

  • Nếu Δ < 0:

- a < 0 thì BPT không nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là:∅.

- a > 0 thì BPT nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: R.

  • Nếu Δ = 0:

- a < 0 thì BPT không nghiệm đúng với mọi giá trị thực củax. Tập nghiệm là:∅.

- a > 0 thì BPT nghiệm đúng với mọi giá trị thực củax. Tập nghiệm là:

  • Nếu Δ > 0, gọix1, x2[x1 < x2]là hai nghiệm củaphương trình bậc haia.x2 + b.x + c = 0với

Khi đó:

- Nếua> 0 thì tập nghiệmlà:[−∞;x1]∪[x2;+∞]

- Nếua< 0 thì tập nghiệmlà:[x1; x2]

II. Ví dụ về bất phương trình

Bài 1: Giải bất phương trình chứa căn sau:

Vậy nghiệm của BPT là x = 0 hoặcx = 98

Bài 2:Tìm m để bất phương trìnhcó nghiệm duy nhất:

III. Các bài tập giải bất phương trình lớp 10

Trong phần 2, chúng tôi xin giới thiệu các dạng bài tập vận dụng cáccông thức giải bất phương trình lớp 10. Các bài tập cũng được chia ra : bpt bậc nhất, bậc hai và các phương trình chứa dấu GTTĐ và chứa ẩn dưới dấu căn.

1. Bài tập về Bất phương trình:

Bài 1/ BPT bậc nhất

Bài 5/ BPT qui về bậc hai có chứa căn thức

Giải các phương trình sau:

2. Bài tập về phương trình

3. Bài tập tổng hợp các dạng

Trên đây là cáccông thức giải bất phương trình lớp 10và kèm theo là các dạng bài tập giải bất phương trình lớp 10. Để làm tốt dạng toán giải bất phương trình, trước hết các em học sinh cần phải nắm vững các quy tắc xét dấu của tam thức bậc nhất và tam thức bậc hai. Sau đó, dựa vào các công thức mà tài liệu đã giới thiệu, các em có thể áp dụng để giải các bất phương trình phức tạp hơn. Giải bất phương trình là một dạng toán rất quan trọng và theo suốt chúng ta trong chương trình toán THPT. Do đó, nó luôn xuất hiện trong các bài kiểm tra một tiết và đề thi học kì lớp 10 nên các em cần đặc biệt lưu ý trong quá trình ôn tập. Hy vong, với các công thức mà Toploigiai giới thiệu, các bạn học sinh lớp 10 sẽ thành thạo việc giải bất phương trình và đạt điểm cao trong các bài kiểm tra sắp tới.

Các dạng phương trình chứa căn bậc hai, bất phương trình chứa căn thức bậc hai luôn là một dạng toán xuất hiện nhiều trong các kì thi học kì, thi tuyển sinh vào lớp 10, thi THPTQG.

Để giải được phương trình, bất phương trình chứa căn, các em học sinh cần nắm vững kiến thức sau:

1. Nguyên tắc chung để giải phương trình, bất phương trình chứa căn bậc 2

Nguyên tắc chung để khử dấu căn thức là bình phương 2 vế của một phương trình, bất phương trình. Tuy nhiên, để đảm bảo việc bình phương này cho chúng ta một phương trình, bất phương trình mới tương đương thì cần phải có điều kiện cả 2 vế pt, bpt đều không âm.

Do đó, về bản chất, chúng ta lần lượt kiểm tra 2 trường hợp âm, và không âm của các biểu thức [thường là 1 vế của phương trình, bất phương trình đã cho].

Nếu bài viết hữu ích, bạn có thể  tặng tôi 1 cốc cafe vào số tài khoản Agribank 3205215033513.  Xin cảm ơn!

2. Các dạng phương trình chứa căn, bất phương trình chứa căn cơ bản

Có khoảng 4 dạng phương trình chứa căn, bất phương trình chứa căn cơ bản đó là

3. Cách giải phương trình chứa căn, cách giải bất phương trình chứa căn

Chi tiết về phương pháp giải các dạng phương trình, bất phương trình chứa căn, xin mời thầy cô và các em học sinh theo dõi trong video sau đây.

4. Một số ví dụ về phương trình và bất phương trình chứa căn thức

Ví dụ 1. Giải phương trình

$$\sqrt {4 + 2x – {x^2}} = x – 2$$

Hướng dẫn. Phương trình đã cho tương đương với

\[\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x – 2 \ge 0\\ 4 + 2x – {x^2} = {[x – 2]^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ {x^2} – 3x = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ x = 0\, \vee \,x = 3 \end{array} \right. \\ \Leftrightarrow x = 3

\end{array}\] Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 2. Giải phương trình

\[\sqrt {25 – {x^2}} = x – 1\]

Hướng dẫn. Phương trình đã cho tương đương với

\[\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x – 1 \ge 0\\ 25 – {x^2} = {[x – 1]^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ 2{x^2} – 2x – 24 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ x = 4\, \vee \,x = – 3 \end{array} \right. \\ \Leftrightarrow x = 4

\end{array}\] Vậy phương trình có nghiệm duy nhất $x=4$.

Ví dụ 3. Giải phương trình \[\sqrt {3{x^2} – 9x + 1} + 2 = x\]

Hướng dẫn. Phương trình đã cho tương đương với

\[\begin{array}{l} \,\,\,\,\,\,\,\,\sqrt {3{x^2} – 9x + 1} = x – 2\\ \, \Leftrightarrow \left\{ \begin{array}{l} x – 2 \ge 0\\ 3{x^2} – 9x + 1 = {[x – 2]^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ 2{x^2} – 5x – 3 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ x = 3 \vee \,x = – \frac{1}{2} \end{array} \right. \\ \Leftrightarrow x = 3

\end{array}\] Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 4. Giải phương trình $$\sqrt {{x^2} – 3x + 2} = x – 1$$

Hướng dẫn. Phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x – 1 \ge 0\\ {x^2} – 3x + 2 = {\left[ {x – 1} \right]^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ x = 1 \end{array} \right. \\ \Leftrightarrow x = 1

\end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 1$.

Ví dụ 5. Giải phương trình $$\sqrt {{x^2} – 5x + 4} = \sqrt { – 2{x^2} – 3x + 12} $$

Hướng dẫn. Phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} {x^2} – 5x + 4 \ge 0\\ {x^2} – 5x + 4 = – 2{x^2} – 3x + 12 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} \left[ {x – 1} \right]\left[ {x – 4} \right] \ge 0\\ 3{x^2} – 2x – 8 = 0 \end{array} \right. & \\ \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x \le 1\\ x \ge 4 \end{array} \right.\\ \left[ \begin{array}{l} x = 2\\ x = \frac{{ – 8}}{6} \end{array} \right. \end{array} \right. \Leftrightarrow x = \frac{{ – 8}}{6}

\end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = \frac{-8}{6}$.

Ví dụ 6. Giải bất phương trình $$x + 1 \ge \sqrt {2\left[ {{x^2} – 1} \right]} $$

Hướng dẫn. Bất phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x + 1 \ge 0\\ {\left[ {x + 1} \right]^2} \ge 2\left[ {{x^2} – 1} \right] \ge 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge – 1\\ {x^2} – 2x – 3 \le 0\\ {x^2} – 1 \ge 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge – 1\\ – 1 \le x \le 3\\ \left[ \begin{array}{l} x \le – 1\\ x \ge 1 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = – 1\\ 1 \le x \le 3 \end{array} \right.

\end{array}$$

Vậy tập nghiệm của bất phương trình là $S = \left[ {1;3} \right] \cup \left\{ { – 1} \right\}$.

Ví dụ 7. Giải bất phương trình $$2x – 5 < \sqrt { – {x^2} + 4x – 3} $$

Hướng dẫn. Phương trình đã cho tương đương với $$\left[ \begin{array}{l} \left\{ \begin{array}{l} 2x – 5 < 0\\ – {x^2} + 4x – 3 \ge 0 \end{array} \right. &  \left[ 1 \right]\\ \left\{ \begin{array}{l} 2x – 5 \ge 0\\ {\left[ {2x – 5} \right]^2} < – {x^2} + 4x – 3 \end{array} \right. & \left[ 2 \right]

\end{array} \right.$$

  • Hệ bất phương trình [1] tương đương với $$\left\{ \begin{array}{l} x < \frac{5}{2}\\ 1 \le x \le 3

    \end{array} \right. \Leftrightarrow 1 \le x < \frac{5}{2}$$

  • Hệ bất phương trình [2] tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x \ge \frac{5}{2}\\ 5{x^2} – 24x + 28 < 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge \frac{5}{2}\\ 2 < x < \frac{{14}}{5} \end{array} \right. \Leftrightarrow \frac{5}{2} \le x < \frac{{14}}{4}

    \end{array}$$

Lấy hợp tập nghiệm của 2 trường hợp trên, được đáp số cuối cùng là $S = \left[ {1;\frac{{14}}{5}} \right]$.

Ví dụ 8. Giải phương trình $$\sqrt {x + 4} – \sqrt {1 – x} = \sqrt {1 – 2x} $$

Hướng dẫn. Phương trình đã cho tương đương với

$$\begin{array}{l} \,\,\,\,\,\,\,\sqrt {x + 4} = \sqrt {1 – 2x} + \sqrt {1 – x} \\ \Leftrightarrow \left\{ \begin{array}{l} – 4 \le x \le \frac{1}{2}\\ x + 4 = 1 – x + 2\sqrt {[1 – x][1 – 2x]} + 1 – 2x \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – 4 \le x \le \frac{1}{2}\\ \sqrt {[1 – x][1 – 2x]} = 2x + 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – 4 \le x \le \frac{1}{2}\\ x \ge – \frac{1}{2}\\ [1 – x][1 – 2x] = 4{x^2} + 4x + 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – \frac{1}{2} \le x \le \frac{1}{2}\\ x = 0 \vee x = – \frac{7}{2} \end{array} \right. \Leftrightarrow x = 0

\end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 0$.

Ví dụ 9. Giải phương trình $$\sqrt {3x + 1} – \sqrt {2x – 1} = \sqrt {6 – x} $$

Hướng dẫn. Điều kiện $\left\{ \begin{align}  & 3x+1\ge 0 \\ & 2x-1\ge 0 \\ & 6-x\ge 0 \\ \end{align} \right.\Leftrightarrow \left\{ \frac{1}{2}\le x\le 6 \right.$

Với điều kiện đó, phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\sqrt {3x + 1} – \sqrt {2x – 1} = \sqrt {6 – x} \\ \Leftrightarrow \,\,\,\sqrt {3x + 1} = \sqrt {6 – x} + \sqrt {2x – 1} \\ \Leftrightarrow \,\,\,3x + 1 = 6 – x + 2x – 1 + 2\sqrt {6 – x} \sqrt {2x – 1} \\ \Leftrightarrow \,\,\,2x – 4 = 2\sqrt {6 – x} \sqrt {2x – 1} \\ \Leftrightarrow \,\,x – 2 = \sqrt {6 – x} \sqrt {2x – 1} \\ \Leftrightarrow \,\,{x^2} – 4x + 4 = – 2{x^2} + 13x – 6\,\,\,[x \ge 2]\\ \Leftrightarrow \,\,3{x^2} – 17x + 10 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 5\\ x = \frac{2}{3}\left[ l \right] \end{array} \right.

\end{array}.$$ Vậy phương trình đã cho có nghiệm $x=5$.

Ví dụ 10. Giải bất phương trình $$2\sqrt{x-3}-\frac{1}{2}\sqrt{9-2x}\ge \frac{3}{2}$$

Hướng dẫn. Điều kiện $\left\{ \begin{align}  & x-3\ge 0 \\ & 9-2x\le 0 \\ \end{align} \right.\Leftrightarrow 3\le x\le \frac{9}{2}$

Với điều kiện trên, bất phương trình đã cho tương đương với \[\begin{array}{l} \,\,\,\,\,\,\,2\sqrt {x – 3} \ge \frac{1}{2}\sqrt {9 – 2x} + \frac{3}{2}\\ \Leftrightarrow 4\left[ {x – 3} \right] \ge \frac{1}{4}\left[ {9 – 2x} \right] + \frac{9}{4} + \frac{3}{2}\sqrt {9 – 2x} \\ \Leftrightarrow 16x – 48 \ge 18 – 2x + 6\sqrt {9 – 2x} \\ \Leftrightarrow 9x – 33 \ge 3\sqrt {9 – 2x} \\ \Leftrightarrow \left\{ \begin{array}{l} 18x – 64 \ge 0\\ {\left[ {9x – 33} \right]^2} \ge 9\left[ {9 – 2x} \right] \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge \frac{{32}}{9}\\ 81{x^2} – 576x + 1008 \ge 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge \frac{{32}}{9}\\ \left[ \begin{array}{l} x \le \frac{{28}}{9}\\ x \ge 4 \end{array} \right. \end{array} \right. \Leftrightarrow x \ge 4

\end{array}\]

Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là $S=\left[ 4;\,\frac{9}{2} \right]$.

Xem các ví dụ khác nữa tại đây: Phương pháp biến đổi tương đương giải phương trình chứa căn

Video liên quan

Chủ Đề