Câu 16 trang 109 sgk đại số và giải tích 11 nâng cao

Ta sẽ chứng minh \({u_n} = 1 + \left( {n - 1} \right){.2^n}\) (1) với mọi \(n 1\), bằng phương pháp qui nạp.
Lựa chọn câu để xem lời giải nhanh hơn
  • LG a
  • LG b

Cho dãy số (un) xác định bởi

\({u_1} = 1\,\text{ và }\,{u_{n + 1}} = {u_n} + \left( {n + 1} \right){.2^n}\) với mọi \(n 1\)

LG a

Chứng minh rằng (un) là một dãy số tăng.

Lời giải chi tiết:

Từ hệ thức xác định dãy số (un), ta có:

\({u_{n + 1}} - {u_n} = \left( {n + 1} \right){.2^n} > 0\;\forall n \ge 1.\)

Do đó (un) là một dãy số tăng.

LG b

Chứng minh rằng

\({u_n} = 1 + \left( {n - 1} \right){.2^n}\) với mọi \(n 1\).

Lời giải chi tiết:

Ta sẽ chứng minh \({u_n} = 1 + \left( {n - 1} \right){.2^n}\) (1) với mọi \(n 1\), bằng phương pháp qui nạp.

+) Với \(n = 1\), ta có \({u_1} = 1 = 1 + \left( {1 - 1} \right){.2^1}.\) Như vậy (1) đúng khi \(n = 1\)

+) Giả sử (1) đúng khi \(n = k, k \in\mathbb N^*\), tức là:

\({u_k} = 1 + \left( {k - 1} \right){2^k}\)

+) Ta sẽ chứng minh (1) cũng đúng với \(n = k + 1\).

Thật vậy, từ hệ thức xác định dãy số (un) và giả thiết qui nạp, ta có :

\({u_{k + 1}} = {u_k} + \left( {k + 1} \right){.2^k} \)

\(= 1 + \left( {k - 1} \right){.2^k} + \left( {k + 1} \right){.2^k} \)

\(= 1 + k{.2^k} - {2^k} + k{.2^k} + {2^k} \)

\(= 1 + 2k{.2^k}= 1 + k{.2^{k + 1}}\)

Vậy (1) đúng với mọi \(n 1\).