Có bao nhiêu giá trị nguyên của m để phương trình x 2 4x 2 3 x 22 m=0 có 4 nghiệm phân biệt
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trìnhx4-4x2-4+2m=0 có 4 nghiệm phân biệt? A. 1. B. 2. C. 0. D. 3. Trang chủ Sách ID Khóa học miễn phí Luyện thi ĐGNL và ĐH 2023
- Cho phương trình ax2 + bx + c = 0 (a ≠ 0). Khi đó + Điều kiện để phương trình có 2 nghiệm trái dấu: a.c < 0 + Điều kiện để phương trình có 2 nghiệm cùng dấu: ( nếu là 2 nghiệm phân biệt cùng dấu ta thay ∆ ≥ 0 bởi ∆ > 0) + Điều kiện để phương trình có 2 nghiệm cùng dấu dương: ( nếu là 2 nghiệm phân biệt cùng dấu ta thay ∆ ≥ 0 bởi ∆ > 0) + Điều kiện để phương trình có 2 nghiệm cùng dấu âm: ( nếu là 2 nghiệm phân biệt cùng dấu ta thay ∆ ≥ 0 bởi ∆ > 0) Ví dụ 1: Tìm m để phương trình x2 – (m2 + 1)x + m2 – 7m + 12 = 0 có hai nghiệm trái dấu Giải Phương trình có 2 nghiệm trái dấu khi a.c < 0 Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu Ví dụ 2: Tìm m để phương trình 3x2 – 4mx + m < 2 – 2m - 3 = 0 có hai nghiệm phân biệt cùng dấu Giải Phương trình có 2 nghiệm phân biệt cùng dấu khi Vậy với m > 3 hoặc m < -1 thì phương trình có hai nghiệm phân biệt cùng dấu Ví dụ 3: Tìm m để phương trình x2 – (2m + 3)x + m = 0 có hai nghiệm phân biệt cùng dấu âm < /p> Giải Phương trình có 2 nghiệm phân biệt cùng dấu âm khi Không có giá trị nào của m thỏa mãn (1), (2) và (3) Vậy không tồn tại m thỏa mãn đề bài Câu 1: Cho phương trình x2 - 2x - 1 = 0 (m là tham số). Tìm khẳng định đúng A. Phương trình luôn có hai nghiệm trái dấu. B. Phương trình vô nghiệm < /p> C. Phương trình có hai nghiệm cùng dấu D. Phương trình có nghiệm kép Giải Vì ac = 1.(-1) = -1 < 0 nên phương trình có 2 nghiệm trái dấu Có thể bạn quan tâmĐáp án đúng là A Câu 2: Cho phương trình x2 - (2m + 1)x + m2 + m - 6 = 0. Tìm m để phương trình có 2 nghiệm âm. A. m > 2 B. m < -4 C. m > 6 D. m < -3 Giải Phương trình có 2 nghiệm cùng dấu âm khi Δ = (2m + 1)2 - 4(m2 + m - 6) = 4m2 + 4m + 1 - 4m2 - 4m + 24 = 25 > 0 với mọi giá trị của m(1) Suy ra m < -3 đồng thời thỏa mãn (1), (2) và (3) Vậy m < -3 thỏa mãn đề bài. Đáp án đúng là D Câu 3: Cho phương trình: x2 - 2mx + 2m - 4 = 0. Có bao nhiêu giá trị nguyên của m nhỏ hơn 2020 để phương trình có 2 nghiệm dương phân biệt. A. 2016 B. 2017 C. 2018 D. 2019 Giải Phương trình có 2 nghiệm phân biệt cùng dấu dương khi Với Δ' > 0 ⇔ m2 - (2m - 4) > 0 ⇔ (m2 - 2m + 1) + 3 > 0 ⇔ (m - 1)2 + 3 > 0 ∀ m(1) Với P > 0 ⇔ 2m - 4 > 0 ⇔ m > 2(2) Với S > 0 ⇔ 2m > 0 ⇔ m > 0(3) Từ (1), (2), (3) ta có các giá trị m cần tìm là m > 2 Suy ra số các giá trị nguyên của m thỏa mãn: 2 < m < 2020 có 2017 số Đáp án đúng là B Câu 4: Cho phương trình: x2 - 2mx - 6m - 9 = 0. Tìm m để phương trình có 2 nghiệm trái dấu thỏa mãn x12+x22=13 Giải Phương trình có 2 nghiệm trái dấu khi: Theo Vi-et ta có: Đáp án đúng là D Câu 5: Cho phương trình: x2 - 8x + m + 5 = 0. Gọi S là tập hợp chứa tất cả các giá trị nguyên của m để phương trình có 2 nghiệm cùng dấu. Tính tổng tất cả các phần tử của S A. 30 B. 56 C. 18 D. 29 Giải Phương trình có 2 nghiệm cùng dấu khi Với Δ' ≥ 0 ⇔ 16 - m - 5 ≥ 0 ⇔ 11-m ≥ 0 ⇔ m ≤ 11 (1) Với P > 0 ⇔ m + 5 > 0 ⇔ m > -5(2) Từ (1), (2) ta có các giá trị m cần tìm là -5 < m ≤ 11 Suy ra S = {-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11} Vậy tổng tất cả các phần tử của S là 56 Đáp án đúng là B Câu 6: Cho phương trình: 2x2 + (2m - 1)x + m - 1 = 0. Tìm m để phương trình có 2 nghiệm âm. A. m > 3 B. m < -1 C. m > 1 D. m < -3 Giải Phương trình có 2 nghiệm cùng dấu âm khi Từ (1), (2), (3) ta có các giá trị của m cần tìm là: m > 1 Đáp án đúng là C Câu 7: Cho phương trình mx2 + 2(m - 2)x + m - 3 = 0. Xác định m để phương trình có hai nghiệm trái dấu. A. m > 0 B. 1 < m < -1 C. 0 D. m < 3 Giải Để phương trình có hai nghiệm trái dấu thì m ≠ 0 và a.c < 0 Suy ra các giá trị m cần tìm là 0 < m < 3 Đáp án đúng là C Câu 8: Tìm m để phương trình mx2 – (5m – 2)x + 6m – 5 = 0 có hai nghiệm đối nhau. Giải Xét phương trình: mx2 - (5m - 2)x + 6m - 5 = 0 Để để phương trình có hai nghiệm đối nhau thì: Vậy thì phương trình có hai nghiệm đối nhau. Đáp án đúng là B Câu 9: Tìm giá trị m để phương trình 2x2 + mx + m - 3 = 0 có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương. A. 0 < m < 3 B. -1 < m < 3 C. m < 2 D. m > -3 Giải Để phương trình có hai nghiệm trái dấu thì: a.c < 0 ⇔ 2.(m-3) < 0 ⇔ m < 3 (1) Giả sử phương trình có hai nghiệm trái dấu: x1 < 0 < x2 Với m < 3 , áp dụng hệ thức Vi- ét ta có: Vì nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương nên: |x1| > |x2| trong đó x1 < 0; x2 > 0 nên Từ (1) và (2) suy ra 0 < m < 3 Vậy 0 < m < 3 thì phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương. Đáp án đúng là A Câu 10: Tìm giá trị m để phương trình x2 – 2(m – 1)x + m – 3 = 0 có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối. A. m = 1 B. m = 4 C. m = 2 D. m = -3 Giải Xét phương trình: x2 – 2(m – 1)x + m – 3 = 0 có: a = 1, b = -2(m – 1), c = m – 3 Phương trình có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối Vậy với m = 1 thì phương trình đã cho có hai nghiệm trái dấu và bằng nhau về giá trị tuyệt đối. Đáp án đúng là A Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:
Giới thiệu kênh Youtube VietJack
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k7: fb.com/groups/hoctap2k7/ Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9. Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn. chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp |