Đề bài - câu 9 trang 126 sgk hình học 11 nâng cao

\(\begin{array}{l}AB{'^2} + B'C{'^2} = AC{'^2}\\ \Leftrightarrow 2{a^2} + 4{a^2} + {\left( {m - a} \right)^2} = 3{a^2} + {m^2}\\ \Leftrightarrow 6{a^2} + {m^2} - 2ma + {a^2} - 3{a^2} - {m^2} = 0\\ \Leftrightarrow 4{a^2} - 2ma = 0\\ \Leftrightarrow 2ma = 4{a^2}\\ \Leftrightarrow m = 2a\end{array}\)

Đề bài

Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B, C sao cho BB = a, CC = m.

a. Với giá trị nào của m thì ABC là tam giác vuông ?

b. Khi tam giác ABC vuông tại B, kẻ AH BC. Chứng minh rằng BCH là tam giác vuông. Tính góc giữa hai mặt phẳng (ABC) và (ABC).

Lời giải chi tiết

Đề bài - câu 9 trang 126 sgk hình học 11 nâng cao

\(\Delta ABC\) vuông tại A nên theo pitago:

\(A{C^2} = B{C^2} - A{B^2}\) \( = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\)

Tam giác ABB vuông tại B nên theo pitago:

\(AB{'^2} = A{B^2} + BB{'^2}\) \( = {a^2} + {a^2} = 2{a^2}\)

Tam giác ACC vuông tại C nên theo pitago:

\(AC{'^2} = A{C^2} + CC{'^2} = 3{a^2} + {m^2}\)

Trong (BCCB), kẻ \(B'M \bot CC'\) thì \(B'M = 2a,MC' = m - a\)

Tam giác BMC vuông tại M nên theo pitago:

\(B'C{'^2} = B'{M^2} + MC{'^2}\) \( = {\left( {2a} \right)^2} + {\left( {m - a} \right)^2} = 4{a^2} + {\left( {m - a} \right)^2}\)

a. Ta có:

+) Tam giác ABC vuông ở A khi và chỉ khi:

\(\begin{array}{l}
AB{'^2} + AC{'^2} = B'C{'^2}\\
\Leftrightarrow 2{a^2} + 3{a^2} + {m^2} = 4{a^2} + {\left( {m - a} \right)^2}\\
\Leftrightarrow 5{a^2} + {m^2} = 4{a^2} + {m^2} - 2ma + {a^2}\\
\Leftrightarrow 2ma = 0\\
\Leftrightarrow m = 0
\end{array}\)

Vậy tam giác ABC vuông ở A khi và chỉ khi m = 0

+) Tam giác ABC vuông ở C khi và chỉ khi :

\(\begin{array}{l}
AC{'^2} + B'C{'^2} = AB{'^2}\\
\Leftrightarrow 3{a^2} + {m^2} + 4{a^2} + {\left( {m - a} \right)^2} = 2{a^2}\\
\Leftrightarrow 5{a^2} + {m^2} + {\left( {m - a} \right)^2} = 0
\end{array}\)

Điều này không xảy ra vì:

\(\left\{ \begin{array}{l}
5{a^2} > 0\\
{m^2} \ge 0\\
{\left( {m - a} \right)^2} \ge 0
\end{array} \right.\)\( \Rightarrow 5{a^2} + {m^2} + {\left( {m - a} \right)^2} > 0,\forall m\)

Tam giác ABC vuông ở B khi và chỉ khi :

\(\begin{array}{l}
AB{'^2} + B'C{'^2} = AC{'^2}\\
\Leftrightarrow 2{a^2} + 4{a^2} + {\left( {m - a} \right)^2} = 3{a^2} + {m^2}\\
\Leftrightarrow 6{a^2} + {m^2} - 2ma + {a^2} - 3{a^2} - {m^2} = 0\\
\Leftrightarrow 4{a^2} - 2ma = 0\\
\Leftrightarrow 2ma = 4{a^2}\\
\Leftrightarrow m = 2a
\end{array}\)

Vậy tam giác ABC vuông ở B khi và chỉ khi m = 2a

b. Giả sử tam giác ABC vuông ở B, tức là m = 2a

Tam giác ABC vuông tại A có đường cao AH nên:

\(BH.BC = A{B^2}\)\( \Leftrightarrow BH = \frac{{A{B^2}}}{{BC}} = \frac{{{a^2}}}{{2a}} = \frac{a}{2}\)

\( \Rightarrow HC = BC - BH\) \( = 2a - \frac{a}{2} = \frac{{3a}}{2}\)

Tam giác BBH vuông tại B nên:

\(B'{H^2} = B'{B^2} + B{H^2}\) \( = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4}\)

Tam giác CCH vuông tại C nên:

\(C'{H^2} = C'{C^2} + C{H^2}\) \( = {\left( {2a} \right)^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{25{a^2}}}{4}\)

\(B'C{'^2} = 4{a^2} + {\left( {2a - a} \right)^2} = 5{a^2}\)

\( \Rightarrow B'{H^2} + B'C{'^2}\) \( = \frac{{5{a^2}}}{4} + 5{a^2} = \frac{{25{a^2}}}{4} = C'{H^2}\)

\( \Rightarrow \Delta B'C'H\) vuông tại B.

*) Tính góc giữa mp(ABC) và mp(ABC) khi m = 2a.

Gọi I là giao điểm của BC và BC.

Do BB // CC , BB = a, CC = 2a nên BB' là đường trung bình của tam giác ICC'

Do đó BC = BI, BC = BI.

Xét phép chiếu lên mp(ABC). Ta có tam giác AIC là hình chiếu của tam giác AIC. Gọi φ là góc giữa mp(ABC) và mp(ABC) thì \({S_{AIC}} = {S_{AIC'}}\cos \varphi \)

Ta có: \({S_{AIC}} = 2{S_{ABC}} \)\(= 2.\frac{1}{2}AB.AC = 2.\frac{1}{2}.a.a\sqrt 3 = {a^2}\sqrt 3 \)

Mặt khác : \({S_{AIC'}} = {1 \over 2}IC'.AB' \)\(= {1 \over 2}.2a\sqrt 5 .a\sqrt 2 = {a^2}\sqrt {10} \)

Từ đó : \(\cos \varphi = {{{a^2}\sqrt 3 } \over {{a^2}\sqrt {10} }} = {{\sqrt {30} } \over {10}}\)

Vậy góc giữa mp(ABC) và mp(ABC) là φ được tính bởi \(\cos \varphi = {{\sqrt {30} } \over {10}},0^\circ < \varphi < 90^\circ \)

.