Tìm m để |x1-x2| đạt giá trị nhỏ nhất

Tìm giá trị của m để phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x 1 ;   x 2 và biểu thức A = ( x 1 − x 2 ) 2 đạt giá trị nhỏ nhất

A. m = 1

B. m = 0

C. m = 2

D. m = 3

  • Tải app VietJack. Xem lời giải nhanh hơn!

Bài giảng: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Quảng cáo

Ví dụ 1: Tìm giá trị thực của tham số a để hàm số y = -x3 - 3x2 + a có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

Hướng dẫn

Đạo hàm f'(x) = -3x2 - 6x ⇒ f'(x) = 0 ⇔

Ta có

Theo bài ra:

Ví dụ 2: Cho hàm số

với m là tham số thực. Tìm giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 3] bằng -2.

Hướng dẫn

TXĐ: D = R\{-8}.

Ta có

Khi đó

Ví dụ 3: Cho hàm só

(với m là tham số thực). Tìm các giá trị của m đề hàm số thỏa mãn

Hướng dẫn

Quảng cáo

Câu 1: Cho hàm số f(x) = x3 + (m2 + 1)x + m2 - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 2] bằng 7.

Hiển thị đáp án

Đạo hàm f'(x) = 3x2 + m2 + 1 > 0,∀ x ∈ R.

Suy ra hàm số f(x) đồng biến trên

Theo bài ra:

Câu 2: Cho hàm số

với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng -2.

Hiển thị đáp án

Đạo hàm

Suy ra hàm số f(x) đồng biến trên

Theo bài ra:

Câu 3: Tìm tất cả giá trị của m để giá trị nhỏ nhất của hàm số

trên đoạn [1; 2] bằng 1.

Hiển thị đáp án

Ta có

Nếu m < 3:

nên hàm số đồng biến trên (1; 2)

(nhận).

Nếu m > 3:

nên hàm số nghịch biến trên (1; 2)

Câu 4: Tìm các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = |x2 - 2x + m| trên đoạn [-1; 2] bằng 5.

Hiển thị đáp án

Xét hàm số f(x) = x2 - 2x + m trên đoạn [-1; 2], ta có f'(x) = 2(x - 1)

và f'(x) = 0 ⇔ x = 1.

Vậy:

TH1.

TH2.

TH3.

Câu 5: Cho hàm số

với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng -2.

Hiển thị đáp án

Đạo hàm

,∀ x ∈[0; 1].

Suy ra hàm số f(x) đồng biến trên [0;1]

Theo bài ra:

Quảng cáo

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Giới thiệu kênh Youtube VietJack

gia-tri-lon-nhat-gia-tri-nho-nhat-cua-ham-so.jsp