Granulocyte-macrophage colony stimulating factor là gì

Papers of special note have been highlighted as:

• of interest

•• of considerable interest

1••. Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol. 2005;25[5]:405–428. Summary of the major role of granulocyte macrophage-colony stimulating factor [GM-CSF] in inflammation and immunity, and as a regulator of granulocyte and macrophage maturation. Effects of GM-CSF administration, blockade or deficiency are discussed. [PubMed] [Google Scholar]

2. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8[7]:533–544. [PubMed] [Google Scholar]

3. Dranoff G, Crawford AD, Sadelain M, et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science. 1994;264[5159]:713–716. [PubMed] [Google Scholar]

4. Stanley E, Lieschke GJ, Grail D, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA. 1994;91[12]:5592–5596. [PMC free article] [PubMed] [Google Scholar]

5. Paine R, 3rd, Preston AM, Wilcoxen S, et al. Granulocyte-macrophage colony-stimulating factor in the innate immune response to Pneumocystis carinii pneumonia in mice. J Immunol. 2000;164[5]:2602–2609. [PubMed] [Google Scholar]

6. LeVine AM, Reed JA, Kurak KE, Cianciolo E, Whitsett JA. GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. J Clin Invest. 1999;103[4]:563–569. [PMC free article] [PubMed] [Google Scholar]

7. Panja A, Goldberg S, Eckmann L, Krishen P, Mayer L. The regulation and functional consequence of proinflammatory cytokine binding on human intestinal epithelial cells. J Immunol. 1998;161[7]:3675–3684. [PubMed] [Google Scholar]

8. Hirsch T, Eggstein S, Frank S, Farthmann EH, von Specht BU. Expression of GM-CSF and a functional GM-CSF receptor in the human colon carcinoma cell line SW403. Biochem Biophys Res Commun. 1995;217[1]:138–143. [PubMed] [Google Scholar]

9. Trutmann M, Terracciano L, Noppen C, et al. GM-CSF gene expression and protein production in human colorectal cancer cell lines and clinical tumor specimens. Int J Cancer. 1998;77[3]:378–385. [PubMed] [Google Scholar]

10••. Hirata Y, Egea L, Dann SM, Eckmann L, Kagnoff MF. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe. 2010;7[2]:151–163. GM-CSF produced in the intestinal mucosa enhances host protection to a bacterial enteropathogen by regulating recruitment and survival of dendritic cells. [PMC free article] [PubMed] [Google Scholar]

11. Coon C, Beagley KW, Bao S. The role of granulocyte macrophage-colony stimulating factor in gastrointestinal immunity to salmonellosis. Scand J Immunol. 2009;70[2]:106–115. [PubMed] [Google Scholar]

12••. Xu Y, Hunt NH, Bao S. The role of granulocyte macrophage-colony-stimulating factor in acute intestinal inflammation. Cell Res. 2008;18[12]:1220–1229. First report to demonstrate that GM-CSF−/− mice are more susceptible to dextran sulfate sodium-induced colitis. [PubMed] [Google Scholar]

13••. Sainathan SK, Hanna EM, Gong Q, et al. Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis. Inflamm Bowel Dis. 2008;14[1]:88–99. GM-CSF treatment ameliorates dextran sulfate sodium-induced colitis and expands splenic plasmacytoid dendritic cells and type 1 interferon production. [PMC free article] [PubMed] [Google Scholar]

14••. Bernasconi E, Favre L, Maillard MH, et al. Granulocyte-macrophage colony-stimulating factor elicits bone marrow-derived cells that promote efficient colonic mucosal healing. Inflamm Bowel Dis. 2010;16[3]:428–441. GM-CSF administration reduces colitis severity in dextran sulfate sodium-treated mice and accelerates colonic tissue repair. [PubMed] [Google Scholar]

15. Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet. 2002;360[9344]:1478–1480. [PubMed] [Google Scholar]

16••. Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ. Sargramostim for active Crohn’s disease. N Engl J Med. 2005;352[21]:2193–2201. GM-CSF treatment decreased Crohn’s disease severity and improved the quality of life of patients in a randomized placebo-controlled trial. [PubMed] [Google Scholar]

17. Takazoe M, Matsui T, Motoya S, Matsumoto T, Hibi T, Watanabe M. Sargramostim in patients with Crohn’s disease: results of a Phase 1–2 study. J Gastroenterol. 2009;44[6]:535–543. [PubMed] [Google Scholar]

18. Valentine JF, Fedorak RN, Feagan B, et al. Steroid-sparing properties of sargramostim in patients with corticosteroid-dependent Crohn’s disease: a randomised, double-blind, placebo-controlled, Phase 2 study. Gut. 2009;58[10]:1354–1362. [PubMed] [Google Scholar]

19. Magno P, Jimenez CE, Ortiz Z, Torres EA. Recombinant human granulocyte-macrophage colony stimulating factor [sargramostim] as an alternative therapy for fistulizing Crohn’s disease. P R Health Sci J. 2010;29[1]:60–65. [PubMed] [Google Scholar]

20. Gasson JC. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood. 1991;77[6]:1131–1145. [PubMed] [Google Scholar]

21. Hamilton JA. GM-CSF in inflammation and autoimmunity. Trends Immunol. 2002;23[8]:403–408. [PubMed] [Google Scholar]

22. Martinez-Moczygemba M, Huston DP. Biology of common β receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol. 2003;112[4]:653–665. [PubMed] [Google Scholar]

23. Hansen G, Hercus TR, McClure BJ, et al. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell. 2008;134[3]:496–507. [PubMed] [Google Scholar]

24. Hercus TR, Thomas D, Guthridge MA, et al. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood. 2009;114[7]:1289–1298. [PMC free article] [PubMed] [Google Scholar]

25. Guthridge MA, Stomski FC, Barry EF, et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol Cell. 2000;6[1]:99–108. [PubMed] [Google Scholar]

26. Guthridge MA, Powell JA, Barry EF, et al. Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch. EMBO J. 2006;25[3]:479–489. [PMC free article] [PubMed] [Google Scholar]

27. Kimura A, Rieger MA, Simone JM, et al. The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood. 2009;114[21]:4721–4728. [PMC free article] [PubMed] [Google Scholar]

28. Sebastian C, Serra M, Yeramian A, Serrat N, Lloberas J, Celada A. Deacetylase activity is required for STAT5-dependent GM-CSF functional activity in macrophages and differentiation to dendritic cells. J Immunol. 2008;180[9]:5898–5906. [PubMed] [Google Scholar]

29. Al-Shami A, Mahanna W, Naccache PH. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b. J Biol Chem. 1998;273[2]:1058–1063. [PubMed] [Google Scholar]

30. Guthridge MA, Stomski FC, Thomas D, et al. Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells. 1998;16[5]:301–313. [PubMed] [Google Scholar]

31. de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal. 1998;10[9]:619–628. [PubMed] [Google Scholar]

32. Choi JK, Choi BH, Ha Y, et al. Signal transduction pathways of GM-CSF in neural cell lines. Neurosci Lett. 2007;420[3]:217–222. [PubMed] [Google Scholar]

33. Gu L, Chiang KY, Zhu N, Findley HW, Zhou M. Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines. Exp Hematol. 2007;35[6]:957–966. [PubMed] [Google Scholar]

34. Prevost JM, Pelley JL, Zhu W, et al. Granulocyte-macrophage colony-stimulating factor [GM-CSF] and inflammatory stimuli upregulate secretion of the soluble GM-CSF receptor in human monocytes: evidence for ectodomain shedding of the cell surface GM-CSF receptor α subunit. J Immunol. 2002;169[10]:5679–5688. [PubMed] [Google Scholar]

35. Sayani F, Montero-Julian FA, Ranchin V, et al. Identification of the soluble granulocyte-macrophage colony stimulating factor receptor protein in vivo. Blood. 2000;95[2]:461–469. [PubMed] [Google Scholar]

36. Raines MA, Liu L, Quan SG, Joe V, DiPersio JF, Golde DW. Identification and molecular cloning of a soluble human granulocyte-macrophage colony-stimulating factor receptor. Proc Natl Acad Sci USA. 1991;88[18]:8203–8207. [PMC free article] [PubMed] [Google Scholar]

37. Brown CB, Beaudry P, Laing TD, Shoemaker S, Kaushansky K. In vitro characterization of the human recombinant soluble granulocyte-macrophage colony-stimulating factor receptor. Blood. 1995;85[6]:1488–1495. [PubMed] [Google Scholar]

38. Fukuzawa H, Sawada M, Kayahara T, et al. Identification of GM-CSF in Paneth cells using single-cell RT-PCR. Biochem Biophys Res Commun. 2003;312[4]:897–902. [PubMed] [Google Scholar]

39. Holowachuk EW, Ruhoff MS. Restoration of abated T cell stimulation activity of mature dendritic cells. Biochem Biophys Res Commun. 2001;285[3]:594–597. [PubMed] [Google Scholar]

40. Sennikov SV, Temchura VV, Trufakin VA, Kozlov VA. Effects of granulocyte-macrophage colony-stimulating factor produced by intestinal epithelial cells on functional activity of hemopoietic stem cells. Bull Exp Biol Med. 2002;134[6]:548–550. [PubMed] [Google Scholar]

41. Sennikov SV, Temchura VV, Kozlov VA, Trufakin VA. The influence of conditioned medium from mouse intestinal epithelial cells on the proliferative activity of crypt cells: role of granulocyte-macrophage colony-stimulating factor. J Gastroenterol. 2002;37[12]:1048–1051. [PubMed] [Google Scholar]

42. Han X, Gilbert S, Groschwitz K, et al. Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury. Gut. 2010;59[8]:1066–1078. [PMC free article] [PubMed] [Google Scholar]

43. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140[6]:859–870. [PMC free article] [PubMed] [Google Scholar]

44. Varol C, Vallon-Eberhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity. 2009;31[3]:502–512. [PubMed] [Google Scholar]

45. Bogunovic M, Ginhoux F, Helft J, et al. Origin of the lamina propria dendritic cell network. Immunity. 2009;31[3]:513–525. [PMC free article] [PubMed] [Google Scholar]

46. Yokota A, Takeuchi H, Maeda N, et al. GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int Immunol. 2009;21[4]:361–377. [PMC free article] [PubMed] [Google Scholar]

47. Tezuka H, Ohteki T. Regulation of intestinal homeostasis by dendritic cells. Immunol Rev. 2010;234[1]:247–258. [PubMed] [Google Scholar]

48. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med. 2007;204[8]:1757–1764. [PMC free article] [PubMed] [Google Scholar]

49. Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood. 2008;111[3]:1013–1020. [PMC free article] [PubMed] [Google Scholar]

50. Ramsay RG, Micallef SJ, Williams B, et al. Colony-stimulating factor-1 promotes clonogenic growth of normal murine colonic crypt epithelial cells in vitro. J Interferon Cytokine Res. 2004;24[7]:416–427. [PubMed] [Google Scholar]

51. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3[7]:521–533. [PubMed] [Google Scholar]

52. Basset C, Holton J. Inflammatory bowel disease: is the intestine a Trojan horse? Sci Prog. 2002;85[Pt 1]:33–56. [PubMed] [Google Scholar]

53. Mayer L. Evolving paradigms in the pathogenesis of IBD. J Gastroenterol. 2010;45[1]:9–16. [PubMed] [Google Scholar]

54. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3[7]:390–407. [PubMed] [Google Scholar]

55. Korzenik JR, Dieckgraefe BK. Is Crohn’s disease an immunodeficiency? A hypothesis suggesting possible early events in the pathogenesis of Crohn’s disease. Dig Dis Sci. 2000;45[6]:1121–1129. [PubMed] [Google Scholar]

56. Noguchi M, Hiwatashi N, Liu ZX, Toyota T. Increased secretion of granulocyte-macrophage colony-stimulating factor in mucosal lesions of inflammatory bowel disease. Digestion. 2001;63[Suppl 1]:32–36. [PubMed] [Google Scholar]

57. Ina K, Kusugami K, Hosokawa T, et al. Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in Inflammatory Bowel disease. J Gastroenterol Hepatol. 1999;14[1]:46–53. [PubMed] [Google Scholar]

58. Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology. 1994;107[6]:1643–1652. [PubMed] [Google Scholar]

59. Metcalf D, Nicola NA, Mifsud S, di Rago L. Receptor clearance obscures the magnitude of granulocyte-macrophage colony-stimulating factor responses in mice to endotoxin or local infections. Blood. 1999;93[5]:1579–1585. [PubMed] [Google Scholar]

60. Uchida K, Nakata K, Suzuki T, et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood. 2009;113[11]:2547–2556. [PMC free article] [PubMed] [Google Scholar]

61. Meager A, Wadhwa M, Bird C, et al. Spontaneously occurring neutralizing antibodies against granulocyte-macrophage colony-stimulating factor in patients with autoimmune disease. Immunology. 1999;97[3]:526–532. [PMC free article] [PubMed] [Google Scholar]

62. Svenson M, Hansen MB, Ross C, et al. Antibody to granulocyte-macrophage colony-stimulating factor is a dominant anti-cytokine activity in human IgG preparations. Blood. 1998;91[6]:2054–2061. [PubMed] [Google Scholar]

63. Meager A, Wadhwa M, Dilger P, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-α, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132[1]:128–136. [PMC free article] [PubMed] [Google Scholar]

64. Uchida K, Beck DC, Yamamoto T, et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med. 2007;356[6]:567–579. [PubMed] [Google Scholar]

65. Meager A, Cludts I, Thorpe R, Wadhwa M. Are neutralizing anti-GM-CSF autoantibodies present in all healthy persons? Blood. 2010;115[2]:433–434. [PubMed] [Google Scholar]

66•. Han X, Uchida K, Jurickova I, et al. Granulocyte-macrophage colony-stimulating factor autoantibodies in murine ileitis and progressive ileal Crohn’s disease. Gastroenterology. 2009;136[4]:1261–1271. E1–E3. Identification of elevated GM-CSF antibodies as a novel cause for neutrophil dysfunction in Crohn’s disease. [PMC free article] [PubMed] [Google Scholar]

67. Hamilton JA, Anderson GP. GM-CSF biology. Growth Factors. 2004;22[4]:225–231. [PubMed] [Google Scholar]

68. Greenhill SR, Kotton DN. Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction. Chest. 2009;136[2]:571–577. [PubMed] [Google Scholar]

69. Yamashita U, Kuroda E. Regulation of macrophage-derived chemokine [MDC, CCL22] production. Crit Rev Immunol. 2002;22[2]:105–114. [PubMed] [Google Scholar]

70. Mantovani A, Gray PA, van Damme J, Sozzani S. Macrophage-derived chemokine [MDC] J Leukoc Biol. 2000;68[3]:400–404. [PubMed] [Google Scholar]

71. Shetye J, Ragnhammar P, Liljefors M, et al. Immunopathology of metastases in patients of colorectal carcinoma treated with monoclonal antibody 17–1A and granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 1998;4[8]:1921–1929. [PubMed] [Google Scholar]

Page 2

Clinical trials using recombinant human granulocyte macrophage colony-stimulating factor as a treatment for Crohn’s disease.

Study [year]Patient populationPatients [n]DesignRegimenResultsRef.
Dieckgraefe & Korzenik [2002]Patients with moderate-to-severe CD [USA]15Uncontrolled open-label dose-escalation trial4, 6 or 8 μg/kg rhGM-CSF sc. daily for 8 weeksGreater than 100 points decrease in CDAI in 12 patients. Eight achieved clinical remission [CDAI 100 point decrease in CDAI] in a maximum of two patients on day 43. Response not sustained at day 57[17]
Valentine et al. [2009]Corticosteroid-dependent patients with CD [USA and Canada]129Randomized double-blind placebo controlled Phase II trial. Patients randomized at 2:1 ratio to rhGM-CSF or placebo6 μg/kg per day rhGM-CSF or placebo sc. for 22 weeks. The study consisted of an adjunctive phase, a forced corticosteroid tapering phase, and an observation phaseTreatment with rhGM-CSF resulted in corticosteroid-free remission 4 weeks after corticosteroid elimination in 18.6% of patients compared with 4.9% for placebo-treated patients[18]
Magno et al. [2010]Patients with fistulizing CD who had failed conventional therapy [Puerto Rico]3Uncontrolled study6 μg/kg per day of rhGM-CSF sc. for 8 weeksrhGM-CSF was ineffective in all three patients. Small number of patients in the study precludes any conclusions[19]

Video liên quan

Chủ Đề