How many words can you make using the letters of lead so that the vowels are together?

Answer

How many words can you make using the letters of lead so that the vowels are together?
Verified

Hint: The word daughter has $8$ letters in which $3$ are vowels. For the vowels to always come together consider all the $3$ vowels to be one letter (suppose V) then total letters become $6$ which can be arranged in $6!$ ways and the vowels themselves in $3!$ ways.Complete step-by-step answer:
Given word ‘DAUGHTER’ has $8$ letters in which $3$ are vowels and 5 are consonants. A, U, E are vowels and D, G, H, T, R are consonants.
(i)We have to find the total number of words formed when the vowels always come together.
Consider the three vowels A, U, E to be one letter V then total letters are D, G, H, T, R and V. So the number of letters becomes $6$
So we can arrange these $6$ letters in $6!$ ways. Since the letter V consists of three vowels, the vowels themselves can interchange with themselves. So the number of ways the $3$vowels can be arranged is $3!$
Then,
$ \Rightarrow $ The total number of words formed will be=number of ways the $6$ letters can be arranged ×number of ways the $3$ vowels can be arranged
On putting the given values we get,
$ \Rightarrow $ The total number of words formed=$6! \times 3!$
We know $n! = n \times \left( {n - 1} \right)! \times ...3,2,1$
$ \Rightarrow $ The total number of words formed=$6 \times 4 \times 5 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1$
On multiplying all the numbers we get,
 $ \Rightarrow $ The total number of words formed=$24 \times 5 \times 6 \times 6$
$ \Rightarrow $ The total number of words formed=$120 \times 36$
$ \Rightarrow $ The total number of words formed=$4320$
The number of words formed from ‘DAUGHTER’ such that all vowels are together is $4320$.

(ii)We have to find the number of words formed when no vowels are together.
Consider the following arrangement- _D_H_G_T_R
The spaces before the consonants are for the vowels so that no vowels come together. Since there are $5$ consonants so they can be arranged in $5!$ ways.
There are $6$ spaces given for $3$ vowels. We know to select r things out of n things we write use the following formula-${}^{\text{n}}{{\text{C}}_{\text{r}}}$=$\dfrac{{n!}}{{r!n - r!}}$
So to select $3$ spaces of out $6$ spaces =${}^6{{\text{C}}_3}$
And the three vowels can be arranged in these three spaces in $3!$ ways.
$ \Rightarrow $ The total number of words formed=${}^6{{\text{C}}_3} \times 3! \times 5!$
$ \Rightarrow $ The total number of words formed=$\dfrac{{6!}}{{3!6 - 3!}} \times 5! \times 3!$
$ \Rightarrow $ The total number of words formed=$\dfrac{{6!}}{{3!}} \times 5!$
On simplifying we get-
$ \Rightarrow $ The total number of words formed=$\dfrac{{6 \times 5 \times 4 \times 3!}}{{3!}} \times 5!$
$ \Rightarrow $ The total number of words formed=$120 \times 5 \times 4 \times 3 \times 2 \times 1$
On multiplying we get,
$ \Rightarrow $ The total number of words formed=$14400$
The total number of words formed from ‘DAUGHTER’ such that no vowels are together is $14400$.

Note: Combination is used when things are to be arranged but not necessarily in order. Permutation is a little different. In permutation, order is important. Permutation is given by-
$ \Rightarrow {}^n{P_r} = \dfrac{{n!}}{{n - r!}}$ Where n=total number of things and r=no. of things to be selected.

Example from the textbook:

How many words can you make using the letters of lead so that the vowels are together?

Question:

How many words can you make using the letters of lead so that the vowels are together?

Sorry people I know most of u are too smart for this question, but I really need help so for questions c, d, e and f I have solved already, but I don't think my method of solving them is correct. G is the one I struggled for hours.

info I already know 8 letters, 3 vowels (A,E,I) and 5 consonants (C,T,R,N,G)

My Working Out

for c, i did 3 x 4 x 5 x 4 x 3 which equals to 720 which is correct.

for d, i did (3 x 4) - (2 x 3) first which equals to 6 I then multiply it by 3, 2, 5, 4 together therefore the final answer is 720. See in the first part I multiply 3 (the number of vowels) by 4 the number of position as any of the three vowels can fit in any of the 4 spaces. The questions asks for two vowels, since 1 vowel is already in one space the second vowel has two of the 3 vowels to take from and any of the two vowels can fit into the 3 remaining spaces. I subtract, because my intuition tells me to do so.

for e, I did (3 x 4) - (2 x 3) - (1 x 2) first which equals to 4 I then multiply it by 3, 2, 1, 5 together, making the answer is 120 which is the right answer. Here, I follow the my own principle from d. So I'm not sure if I'm right.

for f, I got the total arrangements from question a minus the total amount of words without vowels. To get the words without vowels i found all four letter arrangement words with consonants only which is 120. 1680 (from a) - 120 = 1560 (Correct)

for g, I totally don't understand it, but the answer is 18 000.