Moột loại thuốc tha giảm bao nhiêu mm thủy ngân năm 2024

Độ pH của đất được coi là một biến số chính trong đất vì nó ảnh hưởng đến nhiều quá trình hóa học. Nó đặc biệt ảnh hưởng đến lượng dinh dưỡng thực vật bằng cách kiểm soát các dạng hóa học của các chất dinh dưỡng khác nhau và ảnh hưởng đến các phản ứng hóa học mà chúng trải qua. Phạm vi pH tối ưu cho hầu hết các cây trồng là từ 5,5 đến 7,5; tuy nhiên, nhiều loại cây trồng đã thích nghi để phát triển mạnh ở độ pH nằm ngoài phạm vi này.

Phân loại phạm vi pH đất[sửa | sửa mã nguồn]

Bộ Nông nghiệp Hoa Kỳ - Dịch vụ bảo tồn tài nguyên thiên nhiên đã phân loại phạm vi pH đất như sau:

Tên Phạm vi pH Có tính axit cực cao 9.0

Xác định pH[sửa | sửa mã nguồn]

Các phương pháp xác định pH bao gồm:

  • Quan sát hồ sơ đất: Một số đặc điểm hồ sơ nhất định có thể là các chỉ số về điều kiện axit, mặn hoặc nước ngọt. Ví dụ là:
    • Sự kết hợp kém của lớp bề mặt hữu cơ với lớp khoáng bên dưới - điều này có thể chỉ ra các loại đất có tính axit mạnh;
    • Trình tự chân trời podzol cổ điển, vì podzol có tính axit mạnh: trong các loại đất này, một chân trời eluvial [E] nhợt nhạt nằm dưới lớp bề mặt hữu cơ và phủ lên một chân trời B tối;
    • Sự hiện diện của một lớp caliche cho thấy sự hiện diện của calci cacbonat, có trong điều kiện kiềm;
    • Cấu trúc cột có thể là một chỉ số của điều kiện sodic.
  • Quan sát hệ thực vật chiếm ưu thế. Các loài thực vật calcifuge [những loài thích đất chua] bao gồm Erica, Rhododendron và gần như tất cả các loài Ericaceae khác, nhiều loài bạch dương [Betula], foxglove [Digitalis], gorse [Ulex spp.] Và Scots Pine [Pinus sylvestris]. Cây calcicole [vôi yêu] bao gồm cây tro [Fraxinus spp.], Cây kim ngân [Lonicera], Buddleja, dogwoods [Cornus spp.], Lilac [Syringa] và loài Clematis.
  • Sử dụng bộ dụng cụ kiểm tra pH rẻ tiền, trong đó trong một mẫu đất nhỏ được trộn với dung dịch chỉ thị làm thay đổi màu theo độ axit.
  • Sử dụng giấy quỳ. Một mẫu đất nhỏ được trộn với nước cất, trong đó một dải giấy quỳ được chèn vào. Nếu đất có tính axit, giấy sẽ chuyển sang màu đỏ, nếu cơ bản, màu xanh .
  • Sử dụng máy đo pH điện tử có bán trên thị trường, trong đó điện cực ở trạng thái rắn hoặc thủy tinh được đưa vào đất ẩm hoặc hỗn hợp [huyền phù] đất và nước; độ pH thường được đọc trên màn hình hiển thị kỹ thuật số.
  • Gần đây, các phương pháp đo quang phổ đã được phát triển để đo pH đất liên quan đến việc bổ sung thuốc nhuộm chỉ thị vào chiết xuất đất. Chúng so sánh tốt với các phép đo điện cực thủy tinh nhưng cung cấp các lợi thế đáng kể như thiếu trôi, mối nối lỏng và hiệu ứng treo.

Các lần đo chính xác, lặp lại của pH đất là cần thiết cho nghiên cứu khoa học và giám sát. Điều này thường đòi hỏi phân tích phòng thí nghiệm bằng cách sử dụng một giao thức chuẩn; một ví dụ về giao thức như vậy là trong Hướng dẫn phương pháp thí nghiệm đất và phòng thí nghiệm của USDA. Trong tài liệu này, giao thức ba trang để đo pH đất bao gồm các phần sau: Ứng dụng; Tóm tắt phương pháp; Các cuộc họp; An toàn; Trang thiết bị; Thuốc thử; và Thủ tục:

Tóm tắt phương pháp; Sự giao thoa; Sự an toàn; Trang thiết bị; Thuốc thử; và Thủ tục.

Tóm tắt phương pháp

Độ pH được đo trong dung dịch đất-nước [1: 1] và đất-muối [1: 2 ]. Để thuận tiện, ban đầu đo pH trong nước và sau đó đo trong . Với việc bổ sung một thể tích bằng nhau của 0,02 M vào huyền phù đất đã được chuẩn bị cho pH của nước, tỷ lệ đất-dung dịch cuối cùng là 1: 2 0,01 M . 20 g mẫu đất được trộn với 20 mL nước thẩm thấu ngược [RO] [1: 1 w: v] và thỉnh thoảng khuấy. Để yên mẫu trong 1 h và thỉnh thoảng khuấy. Mẫu được khuấy trong 30 s, và đo pH nước 1: 1. Thêm 0,02 M [20 mL] vào huyền phù đất, khuấy mẫu và đo pH 1: 2 0,01 M [4C1a2a2].

— Tóm tắt về phương pháp USDA NRCS để xác định độ pH của đất

Các yếu tố ảnh hưởng đến pH đất[sửa | sửa mã nguồn]

Độ pH của đất tự nhiên phụ thuộc vào thành phần khoáng chất của vật liệu gốc của đất và các phản ứng phong hóa trải qua vật liệu gốc đó. Trong môi trường ấm áp, ẩm ướt, quá trình axit hóa đất xảy ra theo thời gian do các sản phẩm của thời tiết bị rò rỉ bởi nước di chuyển ngang hoặc xuống dưới đất. Tuy nhiên, ở vùng khí hậu khô, thời tiết đất và nước rỉ rác ít dữ dội hơn và độ pH của đất thường trung tính hoặc kiềm.

Nguồn axit[sửa | sửa mã nguồn]

Nhiều quá trình góp phần axit hóa đất. Chúng bao gồm:

  • Lượng mưa: Đất axit thường được tìm thấy ở những nơi có lượng mưa cao. Nước mưa có độ pH hơi axit [thường khoảng 5,7] do phản ứng với CO 2
    CO 2 trong khí quyển tạo thành axit cacbonic. Khi nước này chảy qua đất, nó dẫn đến sự rò rỉ các cation cơ bản từ đất dưới dạng bicacbonat; điều này làm tăng tỷ lệ phần trăm của Al3+
    và H+
    liên quan đến các cation khác.
  • Hô hấp rễ và phân hủy chất hữu cơ do vi sinh vật giải phóng CO 2
    CO 2 làm tăng axit cacbonic [H 2CO 3
    H 2CO 3
    H 2CO
  • tập trung và lọc nước tiếp theo.
  • Sinh trưởng của cây: Cây chiếm chất dinh dưỡng dưới dạng các ion [ví dụ NO− 3
    NO− 3, NH+ 4
    NH+ 4, Ca2+
    , H 2PO− 4
    H 2PO− 4
    H 2PO− 4], và chúng thường chiếm nhiều cation hơn anion. Tuy nhiên, thực vật phải duy trì một điện tích trung tính trong rễ của chúng. Để bù cho khoản phí tích cực thêm, họ sẽ giải phóng H+
    các ion từ gốc. Một số thực vật cũng thải axit hữu cơ vào đất để axit hóa vùng xung quanh rễ của chúng để giúp hòa tan các chất dinh dưỡng kim loại không hòa tan ở pH trung tính, chẳng hạn như sắt [Fe].
  • Sử dụng phân bón: Amoni [NH+ 4
    NH+
  • phân bón phản ứng trong đất bằng quá trình nitrat hóa để tạo thành nitrat [NO− 3
    NO−
  • và trong quá trình phát hành H+
    các ion.
  • Mưa axit: Việc đốt nhiên liệu hóa thạch giải phóng oxit lưu huỳnh và nitơ vào khí quyển. Chúng phản ứng với nước trong khí quyển để tạo thành axit sunfuric và axit nitric trong mưa.
  • Phong hóa oxy hóa: Oxy hóa một số khoáng chất chính, đặc biệt là sulfide và những chất có chứa Fe2+


    , tạo ra tính axit. Quá trình này thường được tăng tốc bởi hoạt động của con người:

    • Chất thải mỏ: Điều kiện axit nghiêm trọng có thể hình thành trong đất gần một số chiến lợi phẩm của mỏ do quá trình oxy hóa pyrite.
    • Đất phèn hình thành tự nhiên trong môi trường ven biển ngập nước và cửa sông có thể có tính axit cao khi thoát nước hoặc đào.

Nguồn kiềm[sửa | sửa mã nguồn]

Tổng độ kiềm của đất tăng khi:

  • Phong hóa khoáng silicat, aluminosilicate và cacbonat chứa Na+
    , Ca2+
    , Mg2+
    và K+
    ;
  • Bổ sung khoáng silicat, aluminosilicate và cacbonat vào đất; điều này có thể xảy ra bằng cách lắng đọng vật liệu bị xói mòn ở nơi khác bởi gió hoặc nước, hoặc bằng cách trộn đất với vật liệu ít bị phong hóa [như bổ sung đá vôi vào đất axit];
  • Bổ sung nước có chứa bicacbonat hòa tan [như xảy ra khi tưới với nước có hàm lượng bicarbonate cao].

Sự tích tụ độ kiềm trong đất [như cacbonat và bicacbonat của Na, K, Ca và Mg] xảy ra khi không đủ nước chảy qua đất để lọc muối hòa tan. Điều này có thể là do điều kiện khô cằn hoặc thoát nước bên trong kém; trong những tình huống này, phần lớn nước xâm nhập vào đất bị thoát ra [được thực vật hấp thụ] hoặc bốc hơi thay vì chảy qua đất.

Độ pH của đất thường tăng khi tổng độ kiềm tăng, nhưng sự cân bằng của các cation được thêm vào cũng có ảnh hưởng rõ rệt đến độ pH của đất. Ví dụ, tăng lượng natri trong đất kiềm có xu hướng gây ra sự hòa tan calci cacbonat, làm tăng độ pH. Các loại đất chăm sóc có thể thay đổi độ pH từ 7,0 đến 9,5, tùy thuộc vào mức độ Ca2+
hoặc Na+
thống trị các cation hòa tan.

Ảnh hưởng của pH đất đến sinh trưởng của cây[sửa | sửa mã nguồn]

Đất phèn[sửa | sửa mã nguồn]

Cây trồng trong đất axit có thể gặp nhiều loại stress bao gồm nhôm [Al], hydro [H] và/hoặc mangan [Mn] độc tính, cũng như sự thiếu hụt chất dinh dưỡng của calci [Ca] và magiê [Mg].

Độc tính nhôm là vấn đề phổ biến nhất trong đất axit. Nhôm có mặt trong tất cả các loại đất, nhưng Al 3+ hòa tan gây độc cho cây; Al 3+ dễ hòa tan nhất ở pH thấp; trên pH 5.0, có ít Al ở dạng hòa tan trong hầu hết các loại đất. Nhôm không phải là một chất dinh dưỡng thực vật, và như vậy, không được thực vật hấp thụ mà xâm nhập vào rễ cây một cách thụ động thông qua thẩm thấu. Nhôm ức chế sự phát triển của rễ; rễ bên và đầu rễ trở nên dày và rễ thiếu phân nhánh tốt; lời khuyên gốc có thể chuyển sang màu nâu. Trong gốc, tác dụng ban đầu của Al 3+ là ức chế sự mở rộng của các tế bào của rhizodermis, dẫn đến vỡ của chúng; Sau đó, nó được biết là can thiệp vào nhiều quá trình sinh lý bao gồm sự hấp thu và vận chuyển calci và các chất dinh dưỡng cần thiết khác, phân chia tế bào, hình thành tế bào và hoạt động của enzyme.

Căng thẳng proton [ion H +] cũng có thể hạn chế sự phát triển của thực vật. Bơm proton, H + -ATPase, của plasmalemma của tế bào gốc hoạt động để duy trì độ pH gần như trung tính của tế bào chất của chúng. Một hoạt động proton cao [pH trong phạm vi 3.0-4.0 đối với hầu hết các loài thực vật] trong môi trường tăng trưởng bên ngoài vượt qua khả năng của tế bào để duy trì pH tế bào chất và sự tăng trưởng ngừng lại.

Trong đất có hàm lượng khoáng chất chứa mangan cao, độc tính Mn có thể trở thành vấn đề ở pH 5,6 và thấp hơn. Mangan, giống như nhôm, ngày càng hòa tan khi pH giảm và các triệu chứng nhiễm độc Mn có thể được nhìn thấy ở mức độ pH dưới 5,6. Mangan là một chất dinh dưỡng thực vật thiết yếu, vì vậy thực vật vận chuyển Mn vào lá. Triệu chứng kinh điển của độc tính Mn là nhăn nheo hoặc uốn lá.

Lượng dinh dưỡng sẵn có liên quan đến pH đất[sửa | sửa mã nguồn]

Lượng dinh dưỡng sẵn có liên quan đến pH đất

PH đất ảnh hưởng đến sự sẵn có của một số chất dinh dưỡng thực vật:

Như đã thảo luận ở trên, độc tính nhôm có ảnh hưởng trực tiếp đến sự tăng trưởng của thực vật; tuy nhiên, bằng cách hạn chế sự phát triển của rễ, nó cũng làm giảm sự sẵn có của các chất dinh dưỡng thực vật. Do rễ bị hư hại, sự hấp thu chất dinh dưỡng bị giảm và sự thiếu hụt các chất dinh dưỡng đa lượng [nitơ, phosphor, kali, calci và magnesi] thường gặp trong đất có tính axit rất mạnh đối với đất siêu axit [pH

Chủ Đề