Bài tập tam giác cân lớp 7 nâng cao

4. Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC (H ∈ AC), kẻ CK ⊥ AB (K ∈ AB). Chứng minh rằng AH = AK.

5. Dạng 4 và 5. Cho tam giác ABC cân tại A. Gọi D là trung điểm của BC. Chứng minh rằng AD là tia phân giác của góc A.

Dạng 5.

6. Một góc của tam giác cân bằng 40º. Tính các góc còn lại.

7. Tìm số đo x trên mỗi hình sau

Bài tập tam giác cân lớp 7 nâng cao

8. Cho tam giác ABC cân tại A và tam giác đều BCD (D và A nằm phía đối với BC). Tính số sso góc BDA.

9. Tam giác ABC cân tại A có \= 100º. Lấy các điểm D và E trên cạnh BC sao cho BD = BA, CE = CA. Tính số đo góc DAE.

10. Chứng minh rằng góc ở đáy của một tam giác cân bao giờ cũng là góc nhọn.

11. Cho tam giác ABC cân tại B. Gọi BE là đường phân giác của góc ngoài tại đỉnh B. Chứng minh rằng BE // AC.

12. Cho tam giác cân AOB (OA = OB). Trên tia đối của tia OB lấy điểm C sao cho OB = OC. Tính số đo góc BAC.

13.* Tam giác ABC cân tại A, điểm M thuộc cạnh BC. Kẻ MD ⊥ AB (D ∈ AB), kẻ ME ⊥ AC (E ∈ AC), kẻ BH ⊥ AC ( H ∈ AC). Chứng minh rằng MD + ME = BH.

14.* Cho tam giác ABC có các góc nhỏ hơn 120º. Ở phía ngoài tam giác ABC, vẽ các tam giác đều ABD và ACE.

  1. Chứng minh rằng DC = BE.
  1. Gọi I là giao điểm của DC và BE. Tính số đo góc BIC.

15.* Dạng 3 và 5. Cho điểm M trên đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và BMD.

  1. Chứng minh rằng AD = CB.
  1. Gọi I, K theo thứ tự là trung điểm của AD, CB. Tam giác MIK là tam giác gì?

Dạng 6.

16. Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự các điểm D, E, F sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều.

17.

Bài tập tam giác cân lớp 7 nâng cao

Cho hình vẽ bên, trong đó O là tâm của đường tròn. Chứng minh rằng các dây BC và AD bằng nhau.

18. Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H ∈ BD). Tia phân giác của góc HAC cắt BC ở D. Chứng minh rằng tam giác ABD là tam giác cân.

19.* Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC, kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB và AC theo thứ tự ở D và E. Chứng minh rằng BD = CE.

20.* Tam giác ABC vuông tại A có AC = 1/2BC. Chứng minh rằng \= 30º.

21.* Tam giác ABC vuông tại A có \= 30º. Chứng minh rằng AC = 1/2BC

22.* Cho tam giác nhọn ABC. Kẻ AD vuông góc với BC (D ∈ BC), kẻ BE vuông góc với AC (E ∈ AC). Gọi H là giao điểm của AD và BE. Biết rằng AH = BC. Tính số đo góc BAC.

Tóm tắt: Nghiên cứu này phân tích tình hình sản xuất lúa cánh đồng mẫu lớn (CĐML), mức độ và điều kiện để duy trì mô hình sản xuất lúa CĐML. Một cuộc khảo sát nông hộ được thực hiện tại 3 xã có diện tích lúa lớn ở huyện Lệ Thủy bằng bảng hỏi bán cấu trúc để thu thập thông tin về diện tích, năng suất, sản lượng tiêu thụ, điều kiện sản xuất và khả năng duy trì mô hình sản xuất lúa CĐML. Kết quả cho thấy mô hình sản xuất lúa CĐML đã hình thành các vùng sản xuất lúa tập trung, góp phần giảm số thửa từ 5,7 thửa xuống còn 2,4 thửa/hộ. Diện tích trung bình một CĐML là 76,7 ha với khoảng 212 hộ tham gia sản xuất các giống mới chất lượng cao hơn, giảm được lượng giống sử dụng trung bình từ 5,9 kg/sào xuống còn 4,2 kg/sào, nâng cao năng suất 0,15 tạ/sào, đồng thời giảm được 4,1% tổng chi phí sản xuất so với sản xuất ngoài CĐML. Tuy vậy, mức độ duy trì quy trình sản xuất lúa CĐML còn thấp. Sau 4 năm thực hiện, có đến hơn 81,7...

Toán Hình nâng cao lớp 7 bao gồm một số bài tập hình học nâng cao, giúp các em học sinh có thể làm quen từng dạng bài, dạng câu hỏi. Tài liệu này sẽ là trợ thủ đắc lực giúp các em đạt nhiều thành tích cao trong các kì thi tại trường và những kì thi học sinh giỏi.

Bài tập Hình học nâng cao lớp 7 được biên soạn theo các chủ đề trọng tâm, khoa học, phù hợp với mọi đối tượng học sinh có học lực từ khá đến giỏi. Toán Hình 7 nâng cao cung cấp một lượng kiến thức vừa đủ sẽ giúp các em học sinh thích nghi và nắm bắt kiến thức một cách dễ dàng. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn đón đọc.

I. Bài tập tự luyện

Bài toán 1. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.

Bài toán 2. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.

Bài toán 3. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.

Bài toán 4. Cho ABC. Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:

  1. ΔABC = ΔMDE
  1. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.

Bài toán 5. Cho ABC vuông tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM = BA; CN = CA. Tính góc MAN

Bài toán 6. Cho đoạn thẳng MN = 4cm, điểm O nằm giữa M và N. Trên cùng một nửa mặt phẳng bờ MN vẽ các tam giác cân đỉnh O là OMA và OMB sao cho góc ở đỉnh O bằng 450. Tìm vị trí của O để AB min. Tính độ dài nhỏ nhất đó.

Bài 7. Tam giác ABC có đường cao AH và trung tuyến AM chia góc A thành ba góc bằng nhau. Chứng minh rằng ∆ABC là tam giác vuông và ∆ABM là tam giác đều.

Bài tập tam giác cân lớp 7 nâng cao

Bài 8. Cho tam giác ABC (AB < AC). Từ trung điểm M của BC kẻ đường vuông góc với tia phân giác của góc A cắt tia này tại H, cắt AB, AC lần lượt tại D và E. Chứng minh rằng: BD = CE.

Bài tập tam giác cân lớp 7 nâng cao

Bài 8. Cho tam giác ABC cân tại A, có góc A = 20o. Trên cạnh AB lấy điểm D sao cho AD = BC. Chứng minh rằng góc DCA = 1/2 góc A.

Bài tập tam giác cân lớp 7 nâng cao

Gợi ý:

  • Vẽ ∆BEC đều (Điểm E ở cùng một nửa mặt phẳng bờ BC với điểm A).
  • Chứng minh góc DCA = góc EAC.

Bài 10. Cho ∆ABC vuông tại A, có góc C = 15o. Trên tia BA lấy điểm O sao cho BO = 2AC. Chứng minh rằng ∆OBC cân.

Bài tập tam giác cân lớp 7 nâng cao

Gợi ý:

  • Vẽ ∆DBC đều (D và A thuộc cùng một nửa mặt phẳng bờ BC)
  • Chứng minh góc BDC = 2 góc BOC

⇒ góc BOC = 30o ⇒ góc OCB = 75o.

Bài 11 Cho ∆ABC cân tại A có góc A = 108o. Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 12o. Vẽ tam giác đều BOM (M và A cùng thuộc một nửa mặt phẳng bờ BO). Chứng minh rằng:

Bài tập tam giác cân lớp 7 nâng cao

a/ Ba điểm C, A, M thẳng hàng

b/ Tam giác AOB cân

II. Bài tập có đáp án

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

  1. ∆ABE = ∆ADC
  1. Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

  1. Chứng minh: EM + HC = NH.
  1. Chứng minh: EN // FM.

Bài 3: Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4: Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

  1. Chứng minh rằng: BE = CD; AD = AE.
  1. Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
  1. Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

  1. DM = EN
  1. Đường thẳng BC cắt MN tại trung điểm I của MN.
  1. Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

Bài 6: Cho tam giác vuông ABC: A = 90o , đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho

CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E.

Chứng minh: AE = BC.

Bài 7: Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia Hx vuông góc với đường thẳng BC.

Lấy A thuộc tia Hx sao cho HA = 6 cm.

  1. ∆ABC là ∆ gì ? Chứng minh điều đó.
  1. Trên tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại Chứng minh: AE = AB

Bài 8: Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:

  1. AC = EB và AC // BE
  1. Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng
  1. Từ E kẻ EH ⊥ BC (H ∈ BC). Biết góc HBE = 50o ; góc MEB = 25o. Tính goc HEM và góc BEM.

Bài 9: Cho tam giác ABC cân tại A có A = 20o, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:

  1. Tia AD là phân giác của góc BAC b) AM = BC

Bài 10: Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh AK + CE = BE.