What part of the brain thickens in adolescence eating the ability to process information?

  • Fuster JM. Prefrontal neurons in networks of executive memory. Brain Res Bull. 2000a;52:331–6.

    CAS  PubMed  Google Scholar 

  • Fuster JM. Memory networks in the prefrontal cortex. Prog brain Res. 2000b;122:309–16.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. Circuitry of the primate prefrontal cortex and the regulation of behavior by representational memory. Handbook of Physiology, The Nervous System, Higher Functions of the Brain. In: Plum F, editor. Handbook of physiology, the nervous system, higher functions of the brain. Bethesda: American Physiological Society; 1987. pp. 373–417.

  • Li H, Yan G, Luo W, Liu T, Wang Y, Liu R, et al. Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Brain Struct Funct. 2021;226:1961–72.

    PubMed  Google Scholar 

  • Flak JN, Solomon MB, Jankord R, Krause EG, Herman JP. Identification of chronic stress-activated regions reveals a potential recruited circuit in rat brain. Eur J Neurosci. 2012;36:2547–55.

    PubMed  PubMed Central  Google Scholar 

  • Izquierdo A, Wellman CL, Holmes A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci. 2006;26:5733–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moench KM, Maroun M, Kavushansky A, Wellman C. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress. Neurobiol Stress. 2016;3:23–33.

    PubMed  Google Scholar 

  • Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 2009;325:621–5.

    CAS  PubMed  Google Scholar 

  • Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex. 2009;19:2479–84.

    PubMed  PubMed Central  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16:313–20.

    PubMed  Google Scholar 

  • McKlveen JM, Morano RL, Fitzgerald M, Zoubovsky S, Cassella SN, Scheimann JR, et al. Chronic stress increases prefrontal inhibition: a mechanism for stress-induced prefrontal dysfunction. Biol Psychiatry. 2016;80:754–64.

    PubMed  PubMed Central  Google Scholar 

  • Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA. 2011;108:13281–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donahue CJ, Glasser MF, Preuss TM, Rilling JK, Van, Essen DC. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc Natl Acad Sci USA. 2018;115:E5183–E92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Povinelli DJ, Preuss TM. Theory of mind: evolutionary history of a cognitive specialization. Trends Neurosci. 1995;18:418–24.

    CAS  PubMed  Google Scholar 

  • Carlen M. What constitutes the prefrontal cortex? Science 2017;358:478–82.

    CAS  PubMed  Google Scholar 

  • Uylings HB, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behav Brain Res. 2003;146:3–17.

    PubMed  Google Scholar 

  • Preuss TM. Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci. 1995;7:1–24.

    CAS  PubMed  Google Scholar 

  • Wise SP. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 2008;31:599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warren JM. Evolution, behavior and the prefrontal cortex. Acta Neurobiol Exp. 1972;32:581–93.

    CAS  Google Scholar 

  • Llinares-Benadero C, Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat Rev Neurosci. 2019;20:161–76.

    CAS  PubMed  Google Scholar 

  • Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009;62:494–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pletikos M, Sousa AM, Sedmak G, Meyer KA, Zhu Y, Cheng F, et al. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron. 2014;81:321–32.

    CAS  PubMed  Google Scholar 

  • Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.

    PubMed  PubMed Central  Google Scholar 

  • Rakic P, Suner I, Williams RW. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc Natl Acad Sci USA. 1991;88:2083–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein JL, Rakic P. Genetic control of cortical development. Cereb Cortex. 1999;9:521–3.

    CAS  PubMed  Google Scholar 

  • Elsen GE, Hodge RD, Bedogni F, Daza RA, Nelson BR, Shiba N, et al. The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc Natl Acad Sci USA. 2013;110:4081–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hevner RF, Haydar TF. The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb Cortex. 2012;22:465–8.

    PubMed  Google Scholar 

  • Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL. Early neocortical regionalization in the absence of thalamic innervation. Science. 1999;285:906–9.

    CAS  PubMed  Google Scholar 

  • O’Leary DD, Stocker, AM, Zembrycki A. Area patterning of the mammalian cortex. In: Rubenstein JL, Rakic P editors. Patterning and Cell Type Specification in the Developing CNS and Pns. San Diego: Elsevier. vol. 1, pp. 61–85.

  • Cholfin JA, Rubenstein JL. Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol. 2008;509:144–55.

    PubMed  PubMed Central  Google Scholar 

  • Borrell V, Reillo I. Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol. 2012;72:955–71.

    PubMed  Google Scholar 

  • Cholfin JA, Rubenstein JL. Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA. 2007;104:7652–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic P. Specification of cerebral cortical areas. Science. 1988;241:170–6.

    CAS  PubMed  Google Scholar 

  • Geschwind DH, Rakic P. Cortical evolution: judge the brain by its cover. Neuron. 2013;80:633–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary DD. Do cortical areas emerge from a protocortex? Trends Neurosci. 1989;12:400–6.

    PubMed  Google Scholar 

  • Creutzfeldt OD. Generality of the functional structure of the neocortex. Die Naturwissenschaften. 1977;64:507–17.

    CAS  PubMed  Google Scholar 

  • Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:110–22.

    CAS  PubMed  Google Scholar 

  • Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci. 2010;30:7028–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgetag CC, Barbas H. Developmental mechanics of the primate cerebral cortex. Anat Embryol. 2005;210:411–7.

    Google Scholar 

  • Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297:365–9.

    CAS  PubMed  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 1998;94:325–37.

    CAS  PubMed  Google Scholar 

  • Huang C, Liu T, Wang Q, Hou W, Zhou C, Song Z, et al. Loss of PP2A disrupts the retention of radial glial progenitors in the telencephalic niche to impair the generation for late-born neurons during cortical developmentdagger. Cereb Cortex. 2020;30:4183–96.

    PubMed  Google Scholar 

  • Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science. 2020;367:6484.

  • Samuelsen GB, Larsen KB, Bogdanovic N, Laursen H, Graem N, Larsen JF, et al. The changing number of cells in the human fetal forebrain and its subdivisions: a stereological analysis. Cereb Cortex. 2003;13:115–22.

    PubMed  Google Scholar 

  • Oberst P, Fievre S, Baumann N, Concetti C, Bartolini G, Jabaudon D. Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature. 2019;573:370–4.

    CAS  PubMed  Google Scholar 

  • Telley L, Agirman G, Prados J, Amberg N, Fievre S, Oberst P, et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. 2019;364:6440.

  • Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108:511–33.

    PubMed  PubMed Central  Google Scholar 

  • Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 1974;183:425–7.

    CAS  PubMed  Google Scholar 

  • Bourgeois JP, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex. 1994;4:78–96.

    CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409:714–20.

    CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron. 2001;31:727–41.

    CAS  PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101:8174–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. 2012;484:376–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci. 2006;9:173–9.

    CAS  PubMed  Google Scholar 

  • Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22:1358–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145:61–83.

    CAS  PubMed  Google Scholar 

  • Sidman RL, Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973;62:1–35.

    CAS  PubMed  Google Scholar 

  • Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, et al. Sidman RLRP. Development of the human central nervous system. Haymaker WARD, editor. Sprinfield, IL: Thomas; 1982.

  • Nobrega-Pereira S, Marin O. Transcriptional control of neuronal migration in the developing mouse brain. Cereb Cortex. 2009;19:i107–13.

    PubMed  Google Scholar 

  • Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, et al. Extensive migration of young neurons into the infant human frontal lobe. Science. 2016;354:6308.

  • Shiba N, Daza RA, Shaffer LG, Barkovich AJ, Dobyns WB, Hevner RF. Neuropathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathol Commun. 2013;1:45.

    PubMed  PubMed Central  Google Scholar 

  • Rakic P, Stensas LJ, Sayre E, Sidman RL. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature. 1974;250:31–4.

    CAS  PubMed  Google Scholar 

  • Schmechel DE, Rakic P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol. 1979;156:115–52.

    CAS  Google Scholar 

  • Rakic P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci USA. 1995;92:11323–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala R, Shu T, Tsai LH. Trekking across the brain: the journey of neuronal migration. Cell. 2007;128:29–43.

    CAS  PubMed  Google Scholar 

  • Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, et al. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci. 2018;21:920–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi D, Li Z, Lim L, Li M, Moissidis M, Yang Y, et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science. 2018;360:81–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosik KS, Nowakowski T. Evolution of new miRNAs and cerebro-cortical development. Annu Rev Neurosci. 2018;41:119–37.

    CAS  PubMed  Google Scholar 

  • Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, et al. Molecular identity of human outer radial glia during cortical development. Cell. 2015;163:55–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science. 2017;358:1318–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar Z, Clowry GJ, Sestan N, Alzu’bi A, Bakken T, Hevner RF, et al. New insights into the development of the human cerebral cortex. J Anat. 2019;235:432–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar Z, Hoerder-Suabedissen A. Regional scattering of primate subplate. Proc Natl Acad Sci USA. 2016;113:9676–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar Z, Kaas JH, de Carlos JA, Hevner RF, Lein E, Nemec P. Evolution and development of the mammalian cerebral cortex. Brain Behav Evol. 2014;83:126–39.

    PubMed  Google Scholar 

  • Molnar Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020;370:6514.

  • Molnar Z, Pollen A. How unique is the human neocortex? Development. 2014;141:11–6.

    CAS  PubMed  Google Scholar 

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464:554–61.

    CAS  PubMed  Google Scholar 

  • Rash BG, Duque A, Morozov YM, Arellano JI, Micali N, Rakic P. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc Natl Acad Sci USA. 2019;116:7089–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 2006;103:13606–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dombrowski SM, Hilgetag CC, Barbas H. Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex. 2001;11:975–88.

    CAS  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H. Are there ten times more glia than neurons in the brain? Brain Struct Funct. 2009;213:365–6.

    PubMed  Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95.

    Google Scholar 

  • Kroon T, van Hugte E, van Linge L, Mansvelder HD, Meredith RM. Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex. Sci Rep. 2019;9:5037.

    PubMed  PubMed Central  Google Scholar 

  • Petanjek Z, Judas M, Kostovic I, Uylings HB. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex. 2008;18:915–29.

    PubMed  Google Scholar 

  • Mrzljak L, Uylings HB, Kostovic I, van Eden CG. Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J Comp Neurol. 1992;316:485–96.

    CAS  PubMed  Google Scholar 

  • Yang JM, Zhang J, Yu YQ, Duan S, Li XM. Postnatal development of 2 microcircuits involving fast-spiking interneurons in the mouse prefrontal cortex. Cereb Cortex. 2014;24:98–109.

    PubMed  Google Scholar 

  • Cooper MA, Koleske AJ. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol. 2014;522:3351–62.

    PubMed  PubMed Central  Google Scholar 

  • Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28:517–27.

    CAS  PubMed  Google Scholar 

  • Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann NY Acad Sci. 2004;1014:140–54.

    CAS  PubMed  Google Scholar 

  • Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Gonzalez-Campo C, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry. 2014;19:417–26.

    CAS  PubMed  Google Scholar 

  • Saab BJ, Mansuy IM. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology. 2014;80:61–9.

    CAS  PubMed  Google Scholar 

  • Schratt G. microRNAs at the synapse. Nat Rev Neurosci. 2009;10:842–9.

    CAS  PubMed  Google Scholar 

  • Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232:232–5.

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    CAS  PubMed  Google Scholar 

  • Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718–29.

    PubMed  Google Scholar 

  • LaMantia AS, Rakic P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci. 1990;10:2156–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaMantia AS, Rakic P. Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey. J Comp Neurol. 1994;340:328–36.

    CAS  PubMed  Google Scholar 

  • Rakic P, Riley KP. Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science 1983;219:1441–4.

    CAS  PubMed  Google Scholar 

  • Meinecke DL, Rakic P. Expression of GABA and GABAA receptors by neurons of the subplate zone in developing primate occipital cortex: evidence for transient local circuits. J Comp Neurol. 1992;317:91–101.

    CAS  PubMed  Google Scholar 

  • Schwartz ML, Meinecke DL. Early expression of GABA-containing neurons in the prefrontal and visual cortices of rhesus monkeys. Cereb Cortex. 1992;2:16–37.

    CAS  PubMed  Google Scholar 

  • Tessier CR, Broadie K. Activity-dependent modulation of neural circuit synaptic connectivity. Front Mol Neurosci. 2009;2:8.

    PubMed  PubMed Central  Google Scholar 

  • Keshavan MS, Anderson S, Pettegrew JW. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res. 1994;28:239–65.

    CAS  PubMed  Google Scholar 

  • Mrzljak L, Uylings HB, Van Eden CG, Judas M. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res. 1990;85:185–222.

    CAS  PubMed  Google Scholar 

  • Pattwell SS, Liston C, Jing D, Ninan I, Yang RR, Witztum J, et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat Commun. 2016;7:11475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 1991;40:657–71.

    CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P. Quantitative autoradiographic mapping of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in the neocortex of the rhesus monkey. J Comp Neurol. 1989;280:27–42.

    CAS  PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3.

    CAS  PubMed  Google Scholar 

  • Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy A, et al. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex. 2005;15:1848–54.

    PubMed  Google Scholar 

  • Beul SF, Barbas H, Hilgetag CC. A predictive structural model of the primate connectome. Sci Rep. 2017;7:43176.

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Cabezas MA, Zikopoulos B, Barbas H. The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct. 2019;224:985–1008.

    PubMed  PubMed Central  Google Scholar 

  • Barbas H, Garcia-Cabezas MA. How the prefrontal executive got its stripes. Curr Opin Neurobiol. 2016;40:125–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex. 2000;10:220–42.

    CAS  PubMed  Google Scholar 

  • Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, et al. Multimodal 3D atlas of the macaque monkey motor and premotor cortex. NeuroImage. 2021;226:117574.

    PubMed  Google Scholar 

  • Verney C, Lebrand C, Gaspar P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec. 2002;267:87–93.

    PubMed  Google Scholar 

  • Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7.

    CAS  PubMed  Google Scholar 

  • Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct. 2016;221:535–61.

    CAS  PubMed  Google Scholar 

  • Bang SJ, Jensen P, Dymecki SM, Commons KG. Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci. 2012;35:85–96.

    PubMed  Google Scholar 

  • Teng T, Gaillard A, Muzerelle A, Gaspar P. EphrinA5 signaling is required for the distinctive targeting of raphe serotonin neurons in the forebrain. eNeuro. 2017;4:0327–16.

  • Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472:347–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003;4:1002–12.

    CAS  PubMed  Google Scholar 

  • Buznikov GA, Lambert HW, Lauder JM. Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res. 2001;305:177–86.

    CAS  PubMed  Google Scholar 

  • Booij L, Tremblay RE, Szyf M, Benkelfat C. Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology. J Psychiatry Neurosci. 2015;40:5–18.

    PubMed  PubMed Central  Google Scholar 

  • Janusonis S, Gluncic V, Rakic P. Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J Neurosci. 2004;24:1652–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia LP, Witteveen JS, Middelman A, van Hulten JA, Martens GJM, Homberg JR, et al. Perturbed developmental serotonin signaling affects prefrontal catecholaminergic innervation and cortical integrity. Mol Neurobiol. 2019;56:1405–20.

    CAS  PubMed  Google Scholar 

  • Radnikow G, Feldmeyer D, Lubke J. Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J Neurosci. 2002;22:6908–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21:5850.

  • Homberg JR, Kolk SM, Schubert D. Editorial perspective of the Research Topic “Deciphering serotonin’s role in neurodevelopment”. Front Cell Neurosci. 2013;7:212.

    PubMed  PubMed Central  Google Scholar 

  • Kinast K, Peeters D, Kolk SM, Schubert D, Homberg JR. Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior. Front Cell Neurosci. 2013;7:72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witteveen JS, Middelman A, van Hulten JA, Martens GJ, Homberg JR, Kolk SM. Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation. Front Cell Neurosci. 2013;7:143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trowbridge S, Narboux-Neme N, Gaspar P. Genetic models of serotonin (5-HT) depletion: what do they tell us about the developmental role of 5-HT? Anat Rec. 2011;294:1615–23.

    CAS  Google Scholar 

  • Verney C, Berger B, Baulac M, Helle KB, Alvarez C. Dopamine-beta-hydroxylase-like immunoreactivity in the fetal cerebral cortex of the rat: Noradrenergic ascending pathways and terminal fields. Int J Developmental Neurosci. 1984;2:491–503.

    CAS  Google Scholar 

  • Levitt P, Moore RY. Development of the noradrenergic innervation of neocortex. Brain Res. 1979;162:243–59.

    CAS  PubMed  Google Scholar 

  • Zecevic N, Verney C. Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex. J Comp Neurol. 1995;351:509–35.

    CAS  PubMed  Google Scholar 

  • Chandler DJ, Gao WJ, Waterhouse BD. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci USA. 2014;111:6816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uematsu A, Tan BZ, Ycu EA, Cuevas JS, Koivumaa J, Junyent F, et al. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat Neurosci. 2017;20:1602–11.

    CAS  PubMed  Google Scholar 

  • Cerpa JC, Marchand AR, Coutureau E. Distinct regional patterns in noradrenergic innervation of the rat prefrontal cortex. J Chem Neuroanat. 2019;96:102–9.

    CAS  PubMed  Google Scholar 

  • Lauder JM, Bloom FE. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol. 1974;155:469–81.

    CAS  PubMed  Google Scholar 

  • Duncan CP, Seidler FJ, Lappi SE, Slotkin TA. Dual control of DNA synthesis by alpha- and beta-adrenergic mechanisms in normoxic and hypoxic neonatal rat brain. Brain Res Dev Brain Res. 1990;55:29–33.

    CAS  PubMed  Google Scholar 

  • Felten DL, Hallman H, Jonsson G. Evidence for a neurotropic role of noradrenaline neurons in the postnatal development of rat cerebral cortex. J Neurocytol. 1982;11:119–35.

    CAS  PubMed  Google Scholar 

  • Blue ME, Parnavelas JG. The effect of neonatal 6-hydroxydopamine treatment on synaptogenesis in the visual cortex of the rat. J Comp Neurol. 1982;205:199–205.

    CAS  PubMed  Google Scholar 

  • Parnavelas JG, Blue ME. The role of the noradrenergic system on the formation of synapses in the visual cortex of the rat. Brain Res. 1982;255:140–4.

    CAS  PubMed  Google Scholar 

  • Winzer-Serhan UH, Leslie FM. Expression of alpha2A adrenoceptors during rat neocortical development. J Neurobiol. 1999;38:259–69.

    CAS  PubMed  Google Scholar 

  • Naqui SZ, Harris BS, Thomaidou D, Parnavelas JG. The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res Dev Brain Res. 1999;113:75–82.

    CAS  PubMed  Google Scholar 

  • Bear MF, Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986;320:172–6.

    CAS  PubMed  Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer JB, Cardenas A, Franke RM, Chen Y, Bai Y, Belluzzi JD, et al. Prenatal nicotine sex-dependently alters adolescent dopamine system development. Transl Psychiatry. 2019;9:304.

    PubMed  PubMed Central  Google Scholar 

  • Mirmiran M, Dijcks FA, Bos NP, Gorter JA, Van, der Werf D. Cortical neuron sensitivity to neurotransmitters following neonatal noradrenaline depletion. Int J Dev Neurosci. 1990;8:217–21.

    CAS  PubMed  Google Scholar 

  • Bortel A, Nowak P, Brus R. Neonatal DSP-4 treatment modifies GABAergic neurotransmission in the prefrontal cortex of adult rats. Neurotox Res. 2008;13:247–52.

    CAS  PubMed  Google Scholar 

  • Datta D, Yang ST, Galvin VC, Solder J, Luo F, Morozov YM, et al. Noradrenergic alpha1-adrenoceptor actions in the primate dorsolateral prefrontal cortex. J Neurosci. 2019;39:2722–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oda S, Tsuneoka Y, Yoshida S, Adachi-Akahane S, Ito M, Kuroda M, et al. Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex. J Comp Neurol. 2018;526:1329–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayraghavan S, Major AJ, Everling S. Muscarinic M1 receptor overstimulation disrupts working memory activity for rules in primate prefrontal cortex. Neuron. 2018;98:1256–68. e4

    CAS  PubMed  Google Scholar 

  • Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, et al. Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex. Neuron. 2020;106:649–61. e4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001;21:9917–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saboory E, Ghasemi M, Mehranfard N. Norepinephrine, neurodevelopment and behavior. Neurochemistry Int. 2020;135:104706.

    CAS  Google Scholar 

  • Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42:33–84.

    PubMed  Google Scholar 

  • Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron. 2008;57:760–73.

    CAS  PubMed  Google Scholar 

  • Kolk SM, Gunput RA, Tran TS, van den Heuvel DM, Prasad AA, Hellemons AJ, et al. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J Neurosci. 2009;29:12542–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalsbeek A, De Bruin JP, Feenstra MG, Uylings HB. Age-dependent effects of lesioning the mesocortical dopamine system upon prefrontal cortex morphometry and PFC-related behaviors. Prog Brain Res. 1990;85:257–82. discussion 82-3

    CAS  PubMed  Google Scholar 

  • Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB. Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol. 1988;269:58–72.

    CAS  PubMed  Google Scholar 

  • Manitt C, Eng C, Pokinko M, Ryan RT, Torres-Berrio A, Lopez JP, et al. dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Transl Psychiatry. 2013;3:e338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds LM, Pokinko M, Torres-Berrio A, Cuesta S, Lambert LC, Del Cid Pellitero E. et al. DCC receptors drive prefrontal cortex maturation by determining dopamine axon targeting in adolescence. Biol psychiatry. 2018;83:181–92.

    CAS  PubMed  Google Scholar 

  • Cuesta S, Nouel D, Reynolds LM, Morgunova A, Torres-Berrio A, White A, et al. Dopamine axon targeting in the nucleus accumbens in adolescence requires netrin-1. Front Cell Dev Biol. 2020;8:487.

    PubMed  PubMed Central  Google Scholar 

  • Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, et al. The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J Neurosci. 2011;31:8381–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benes FM, Taylor JB, Cunningham MC. Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: implications for the development of psychopathology. Cereb Cortex. 2000;10:1014–27.

    CAS  PubMed  Google Scholar 

  • Naneix F, Marchand AR, Di Scala G, Pape JR, Coutureau E. Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. J Neurosci. 2012;32:16223–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg DR, Lewis DA. Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. J Comp Neurol. 1995;358:383–400.

    CAS  PubMed  Google Scholar 

  • Lambe EK, Krimer LS, Goldman-Rakic PS. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J Neurosci. 2000;20:8780–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weickert CS, Webster MJ, Gondipalli P, Rothmond D, Fatula RJ, Herman MM, et al. Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience. 2007;144:1109–19.

    CAS  PubMed  Google Scholar 

  • Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci. 2012;13:18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnsten AF, Wang M, Paspalas CD. Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev. 2015;67:681–96.

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Wang HL, Li X, Ng TH, Morales M. Mesocorticolimbic glutamatergic pathway. J Neurosci. 2011;31:8476–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelova N, Mulholland PJ, Chandler LJ, Seamans JK. The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb Cortex. 2012;22:327–36.

    PubMed  Google Scholar 

  • Kabanova A, Pabst M, Lorkowski M, Braganza O, Boehlen A, Nikbakht N, et al. Function and developmental origin of a mesocortical inhibitory circuit. Nat Neurosci. 2015;18:872–82.

    CAS  PubMed  Google Scholar 

  • Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci. 2005;25:5013–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki M, Takeuchi T. Locus coeruleus and dopamine-dependent memory consolidation. Neural Plasticity. 2017;2017:8602690.

    PubMed  PubMed Central  Google Scholar 

  • Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature. 2019;570:509–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung HC, Gore JC, Goldman-Rakic PS. Differential anterior prefrontal activation during the recognition stage of a spatial working memory task. Cereb Cortex. 2005;15:1742–9.

    PubMed  Google Scholar 

  • Noudoost B, Moore T. The role of neuromodulators in selective attention. Trends Cogn Sci. 2011;15:585–91.

    PubMed  PubMed Central  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 1979;205:929–32.

    CAS  PubMed  Google Scholar 

  • Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 2004;27:392–9.

    CAS  PubMed  Google Scholar 

  • Krimer LS, Goldman-Rakic PS. Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci. 2001;21:3788–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997;278:474–6.

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39.

    CAS  PubMed  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 1995;15:1287–98.

    CAS  PubMed  Google Scholar 

  • Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:1873–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Owens DF, Boyce LH, Davis MB, Kriegstein AR. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci. 1996;16:6414–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani N, Goto T, Waeber C, Bhide PG. Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci. 2003;23:2840–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci. 2007;27:3813–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilb W. Development of the GABAergic system from birth to adolescence. Neuroscientist. 2012;18:613–30.

    PubMed  Google Scholar 

  • Romo-Parra H, Trevino M, Heinemann U, Gutierrez R. GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments. J Neurophysiol. 2008;99:1523–34.

    CAS  PubMed  Google Scholar 

  • Erickson SL, Lewis DA. Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J Comp Neurol. 2002;448:186–202.

    CAS  PubMed  Google Scholar 

  • Cruz DA, Eggan SM, Lewis DA. Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. J Comp Neurol. 2003;465:385–400.

    PubMed  Google Scholar 

  • Radonjic NV, Ayoub AE, Memi F, Yu X, Maroof A, Jakovcevski I, et al. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep. 2014;9:2139–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fertuzinhos S, Krsnik Z, Kawasawa YI, Rasin MR, Kwan KY, Chen JG, et al. Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. Cereb Cortex. 2009;19:2196–207.

    PubMed  PubMed Central  Google Scholar 

  • Verwer RW, Van Vulpen EH, Van Uum JF. Postnatal development of amygdaloid projections to the prefrontal cortex in the rat studied with retrograde and anterograde tracers. J Comp Neurol. 1996;376:75–96.

    CAS  PubMed  Google Scholar 

  • Bacon SJ, Headlam AJ, Gabbott PL, Smith AD. Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res. 1996;720:211–9.

    CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR. Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol. 1996;369:1–15.

    CAS  PubMed  Google Scholar 

  • Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.

    PubMed  Google Scholar 

  • Wang J, John Y, Barbas H. Pathways for contextual memory: the primate hippocampal pathway to anterior cingulate cortex. Cerebral Cortex. 2021;31:1807–26.

  • Ghashghaei HT, Hilgetag CC, Barbas H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage. 2007;34:905–23.

    CAS  PubMed  Google Scholar 

  • Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev. 2021;130:162–77.

  • Homman-Ludiye J, Bourne JA. The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat. 2019;235:507–20.

    PubMed  PubMed Central  Google Scholar 

  • Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Xing X, Sousa AMM, et al. Regulation of prefrontal patterning, connectivity and synaptogenesis by retinoic acid. bioRxiv. 2019; https://www.biorxiv.org/content/10.1101/2019.12.31.891036v1.

  • Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol. 1992;320:145–60.

    CAS  PubMed  Google Scholar 

  • Christie MJ, James LB, Beart PM. An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat. J Neurochem. 1985;45:477–82.

    CAS  PubMed  Google Scholar 

  • Gao M, Liu CL, Yang S, Jin GZ, Bunney BS, Shi WX. Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. J Neurosci. 2007;27:5414–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY, et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature. 2012;492:428–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geddes SD, Assadzada S, Lemelin D, Sokolovski A, Bergeron R, Haj-Dahmane S, et al. Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids. Proc Natl Acad Sci USA. 2016;113:5429–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak Dorocic I, Furth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, et al. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron. 2014;83:663–78.

    CAS  PubMed  Google Scholar 

  • Janiesch PC, Kruger HS, Poschel B, Hanganu-Opatz IL. Cholinergic control in developing prefrontal-hippocampal networks. J Neurosci. 2011;31:17955–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont E, Hanganu IL, Kilb W, Hirsch S, Luhmann HJ. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature. 2006;439:79–83.

    CAS  PubMed  Google Scholar 

  • Matthews DA, Nadler JV, Lynch GS, Cotman CW. Development of cholinergic innervation in the hippocampal formation of the rat. I. Histochemical demonstration of acetylcholinesterase activity. Dev Biol. 1974;36:130–41.

    CAS  PubMed  Google Scholar 

  • Hanganu IL, Staiger JF, Ben-Ari Y, Khazipov R. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo. J Neurosci. 2007;27:5694–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom-Lindahl E, Gorbounova O, Seiger A, Mousavi M, Nordberg A. Regional distribution of nicotinic receptors during prenatal development of human brain and spinal cord. Brain Res Dev Brain Res. 1998;108:147–60.

    CAS  PubMed  Google Scholar 

  • Atluri P, Fleck MW, Shen Q, Mah SJ, Stadfelt D, Barnes W, et al. Functional nicotinic acetylcholine receptor expression in stem and progenitor cells of the early embryonic mouse cerebral cortex. Dev Biol. 2001;240:143–56.

    CAS  PubMed  Google Scholar 

  • Ma W, Maric D, Li BS, Hu Q, Andreadis JD, Grant GM, et al. Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation. Eur J Neurosci. 2000;12:1227–40.

    CAS  PubMed  Google Scholar 

  • Zheng JQ, Felder M, Connor JA, Poo MM. Turning of nerve growth cones induced by neurotransmitters. Nature. 1994;368:140–4.

    CAS  PubMed  Google Scholar 

  • Kostovic I, Goldman-Rakic PS. Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol. 1983;219:431–47.

    CAS  PubMed  Google Scholar 

  • Kostovic I, Rakic P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci. 1984;4:25–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mechawar N, Descarries L. The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study. Neuroscience. 2001;108:555–67.

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Hersh LB, Mash DC, Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J Comp Neurol. 1992;318:316–28.

    CAS  PubMed  Google Scholar 

  • Kostovic I, Skavic J, Strinovic D. Acetylcholinesterase in the human frontal associative cortex during the period of cognitive development: early laminar shifts and late innervation of pyramidal neurons. Neurosci Lett. 1988;90:107–12.

    CAS  PubMed  Google Scholar 

  • Lewis DA. Distribution of choline acetyltransferase-immunoreactive axons in monkey frontal cortex. Neuroscience. 1991;40:363–74.

    CAS  PubMed  Google Scholar 

  • Konsolaki E, Skaliora I. Premature aging phenotype in mice lacking high-affinity nicotinic receptors: region-specific changes in layer V pyramidal cell morphology. Cereb Cortex. 2015;25:2138–48.

    PubMed  Google Scholar 

  • Ballesteros-Yanez I, Benavides-Piccione R, Bourgeois JP, Changeux JP, DeFelipe J. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proc Natl Acad Sci USA. 2010;107:11567–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey CD, Alves NC, Nashmi R, De Biasi M, Lambe EK. Nicotinic alpha5 subunits drive developmental changes in the activation and morphology of prefrontal cortex layer VI neurons. Biol Psychiatry. 2012;71:120–8.

    CAS  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci. 2004;24:5131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng KY, O’Donnell P. Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. Cereb Cortex. 2005;15:49–57.

    PubMed  Google Scholar 

  • Ruediger T, Bolz J. Neurotransmitters and the development of neuronal circuits. Adv Exp Med Biol. 2007;621:104–15.

    PubMed  Google Scholar 

  • Hensler JG, Artigas F, Bortolozzi A, Daws LC, De Deurwaerdere P, Milan L, et al. Catecholamine/Serotonin interactions: systems thinking for brain function and disease. Adv Pharmacol. 2013;68:167–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galvin VC, Arnsten AFT, Wang M. Evolution in neuromodulation-the differential roles of acetylcholine in higher order association vs. primary visual cortices. Front Neural Circuits. 2018;12:67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giovanni G, Di Matteo V, Esposito E. Serotonin-dopamine interaction: experimental evidence and therapeutic relevance. Preface. Prog Brain Res. 2008;172:ix.

  • Di Giovanni G, Di Matteo V, Pierucci M, Esposito E. Serotonin-dopamine interaction: electrophysiological evidence. Prog Brain Res. 2008;172:45–71.

    PubMed  Google Scholar 

  • Esposito E, Di Matteo V, Di Giovanni G. Serotonin-dopamine interaction: an overview. Prog Brain Res. 2008;172:3–6.

    CAS  PubMed  Google Scholar 

  • D’Amato RJ, Blue ME, Largent BL, Lynch DR, Ledbetter DJ, Molliver ME, et al. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Natl Acad Sci USA. 1987;84:4322–6.

    PubMed  PubMed Central  Google Scholar 

  • Zhou FC, Sari Y, Zhang JK. Expression of serotonin transporter protein in developing rat brain. Brain Res Dev Brain Res. 2000;119:33–45.

    CAS  PubMed  Google Scholar 

  • Narboux-Neme N, Pavone LM, Avallone L, Zhuang X, Gaspar P. Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology. 2008;55:994–1005.

    CAS  PubMed  Google Scholar 

  • Altamura C, Dell’Acqua ML, Moessner R, Murphy DL, Lesch KP, Persico AM. Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb Cortex. 2007;17:1394–401.

    CAS  PubMed  Google Scholar 

  • Tribollet E, Bertrand D, Marguerat A, Raggenbass M. Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience. 2004;124:405–20.

    CAS  PubMed  Google Scholar 

  • Gaspar P, Bloch B, Le, Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci. 1995;7:1050–63.

    CAS  PubMed  Google Scholar 

  • Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99:271–83.

    CAS  PubMed  Google Scholar 

  • Vitalis T, Parnavelas JG. The role of serotonin in early cortical development. Dev Neurosci. 2003;25:245–56.

    CAS  PubMed  Google Scholar 

  • Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31:373–85.

    PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci. 1999;2:859–61.

    CAS  PubMed  Google Scholar 

  • Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    CAS  PubMed  Google Scholar 

  • Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb Cortex. 2001;11:558–71.

    CAS  PubMed  Google Scholar 

  • Travis K, Ford K, Jacobs B. Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci. 2005;27:277–87.

    CAS  PubMed  Google Scholar 

  • Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spinogenesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

    PubMed  PubMed Central  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:2.

    PubMed  PubMed Central  Google Scholar 

  • Tsujimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:345–58.

    PubMed  Google Scholar 

  • Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

    CAS  PubMed  Google Scholar 

  • Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry. 2015;20:1261.

    CAS  PubMed  Google Scholar 

  • Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev. 2016;70:4–12.

    PubMed  PubMed Central  Google Scholar 

  • Flensborg-Madsen T, Mortensen EL. Language development and intelligence in midlife. Br J Dev Psychol. 2019;37:269–83.

    PubMed  Google Scholar 

  • Demetriou A, Spanoudis G. From cognitive development to intelligence: translating developmental mental milestones into intellect. J Intell. 2017;5:30.

  • Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry. 2002;51:775–87.

    CAS  PubMed  Google Scholar 

  • Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13:22–37.

    PubMed  PubMed Central  Google Scholar 

  • Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013;79:16–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morin EL, Howell BR, Feczko E, Earl E, Pincus M, Reding K, et al. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev Psychopathol. 2020;32:1579–96.

    PubMed  Google Scholar 

  • Niemi MEK, Martin HC, Rice DL, Gallone G, Gordon S, Kelemen M, et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature. 2018;562:268–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66:817–22.

    CAS  PubMed  Google Scholar 

  • Verheij C, Bakker CE, de Graaff E, Keulemans J, Willemsen R, Verkerk AJ, et al. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature. 1993;363:722–4.

    CAS  PubMed  Google Scholar 

  • Siegel JJ, Chitwood RA, Ding JM, Payne C, Taylor W, Gray R, et al. Prefrontal cortex dysfunction in fragile X mice depends on the continued absence of fragile X mental retardation protein in the adult brain. J Neurosci. 2017;37:7305–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell CJ, Sceniak MP, Lang M, Krakowiecki W, Abouelsoud FE, Lad SU, et al. Activation of the medial prefrontal cortex reverses cognitive and respiratory symptoms in a mouse model of rett syndrome. eNeuro. 0277-17. 2017:1–12.

  • Armstrong DD, Dunn K, Antalffy B. Decreased dendritic branching in frontal, motor and limbic cortex in Rett syndrome compared with trisomy 21. J Neuropathol Exp Neurol. 1998;57:1013–7.

    CAS  PubMed  Google Scholar 

  • Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature. 2016;530:98–102.

    CAS  PubMed  Google Scholar 

  • Yu ZX, Wang DY, Xu XH. Gene editing to the rescue: reversal of social deficits associated with MECP2 duplication. Neurosci Bull. 2020;36:567–9.

    PubMed  PubMed Central  Google Scholar 

  • Yu B, Yuan B, Dai JK, Cheng TL, Xia SN, He LJ, et al. Reversal of social recognition deficit in adult mice with MECP2 duplication via normalization of MeCP2 in the medial prefrontal cortex. Neurosci Bull. 2020;36:570–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron. 2004;42:947–59.

    CAS  PubMed  Google Scholar 

  • van Dongen LCM, Wingbermuhle E, van der Veld WM, Vermeulen K, Bos-Roubos AG, Ockeloen CW, et al. Exploring the behavioral and cognitive phenotype of KBG syndrome. Genes Brain Behav. 2019;18:e12553.

    PubMed  PubMed Central  Google Scholar 

  • van Dongen LCM, Wingbermuhle PAM, van der Veld WM, Stumpel C, Kleefstra T, Egger JIM. Exploring the cognitive phenotype of Kabuki (Niikawa-Kuroki) syndrome. J Intellect Disabil Res. 2019;63:498–506.

    PubMed  PubMed Central  Google Scholar 

  • Schut EHS, Alonso A, Smits S, Khamassi M, Samanta A, Negwer M, et al. The Object Space Task reveals increased expression of cumulative memory in a mouse model of Kleefstra syndrome. Neurobiol Learn Mem. 2020;173:107265.

    CAS  PubMed  Google Scholar 

  • Egger JI, Zwanenburg RJ, van Ravenswaaij-Arts CM, Kleefstra T, Verhoeven WM. Neuropsychological phenotype and psychopathology in seven adult patients with Phelan-McDermid syndrome: implications for treatment strategy. Genes Brain Behav. 2016;15:395–404.

    CAS  PubMed  Google Scholar 

  • Sidorov MS, Judson MC, Kim H, Rougie M, Ferrer AI, Nikolova VD, et al. Enhanced operant extinction and prefrontal excitability in a mouse model of angelman syndrome. J Neurosci. 2018;38:2671–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laje G, Bernert R, Morse R, Pao M, Smith AC. Pharmacological treatment of disruptive behavior in Smith-Magenis syndrome. Am J Med Genet Part C Semin Med Genet. 2010;154C:463–8.

    PubMed  Google Scholar 

  • Laje G, Morse R, Richter W, Ball J, Pao M, Smith AC. Autism spectrum features in Smith-Magenis syndrome. Am J Med Genet Part C Semin Med Genet. 2010;154C:456–62.

    PubMed  Google Scholar 

  • Proulx E, Young EJ, Osborne LR, Lambe EK. Enhanced prefrontal serotonin 5-HT(1A) currents in a mouse model of Williams-Beuren syndrome with low innate anxiety. J Neurodev Disord. 2010;2:99–108.

    PubMed  PubMed Central  Google Scholar 

  • Witteveen JS, Willemsen MH, Dombroski TC, van Bakel NH, Nillesen WM, van Hulten JA, et al. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat Genet. 2016;48:877–87.

    CAS  PubMed  Google Scholar 

  • Frega M, Linda K, Keller JM, Gumus-Akay G, Mossink B, van Rhijn JR, et al. Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun. 2019;10:4928.

    PubMed  PubMed Central  Google Scholar 

  • Boisgontier J, Tacchella JM, Lemaitre H, Lehman N, Saitovitch A, Gatinois V, et al. Anatomical and functional abnormalities on MRI in kabuki syndrome. NeuroImage Clin. 2019;21:101610.

    PubMed  Google Scholar 

  • Jacot-Descombes S, Keshav NU, Dickstein DL, Wicinski B, Janssen WGM, Hiester LL, et al. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol Autism. 2020;11:89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celen C, Chuang JC, Luo X, Nijem N, Walker AK, Chen F, et al. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. eLife. 2017;6:e25730:1–22.

  • Rotaru DC, van Woerden GM, Wallaard I, Elgersma Y. Adult Ube3a gene reinstatement restores the electrophysiological deficits of prefrontal cortex layer 5 neurons in a mouse model of angelman syndrome. J Neurosci. 2018;38:8011–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WH, Wang DC, Allen WE, Klope M, Hu H, Shamloo M, et al. Early adolescent Rai1 reactivation reverses transcriptional and social interaction deficits in a mouse model of Smith-Magenis syndrome. Proc Natl Acad Sci USA. 2018;115:10744–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamm L, Menon V, Reiss AL. Abnormal prefrontal cortex function during response inhibition in Turner syndrome: functional magnetic resonance imaging evidence. Biol Psychiatry. 2003;53:107–11.

    PubMed  Google Scholar 

  • Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med. 2017;9:101.

    PubMed  PubMed Central  Google Scholar 

  • Marin-Padilla M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Res. 1972;44:625–9.

    CAS  PubMed  Google Scholar 

  • Jay V, Chan FW, Becker LE. Dendritic arborization in the human fetus and infant with the trisomy 18 syndrome. brain Res Developmental brain Res. 1990;54:291–4.

    CAS  Google Scholar 

  • Marin-Padilla M. Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. A Golgi study. J Comp Neurol. 1976;167:63–81.

    CAS  PubMed  Google Scholar 

  • Contestabile A, Benfenati F, Gasparini L. Communication breaks-Down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog Neurobiol. 2010;91:1–22.

    PubMed  Google Scholar 

  • Chakrabarti L, Galdzicki Z, Haydar TF. Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. J Neurosci: Off J Soc Neurosci. 2007;27:11483–95.

    CAS  Google Scholar 

  • Cheng A, Haydar TF, Yarowsky PJ, Krueger BK. Concurrent generation of subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.

    CAS  Google Scholar 

  • Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, et al. Altered hippocampal-prefrontal neural dynamics in mouse models of Down syndrome. Cell Rep. 2020;30:1152–63.e4.

  • Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A human neurodevelopmental model for Williams syndrome. Nature 2016;536:338–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hrvoj-Mihic B, Hanson KL, Lew CH, Stefanacci L, Jacobs B, Bellugi U, et al. Basal dendritic morphology of cortical pyramidal neurons in Williams syndrome: prefrontal cortex and beyond. Front Neurosci. 2017;11:419.

    PubMed  PubMed Central  Google Scholar 

  • Lew CH, Brown C, Bellugi U, Semendeferi K. Neuron density is decreased in the prefrontal cortex in Williams syndrome. Autism Res. 2017;10:99–112.

    PubMed  Google Scholar 

  • Aman LCS, Manning KE, Whittington JE, Holland AJ. Mechanistic insights into the genetics of affective psychosis from Prader-Willi syndrome. Lancet Psychiatry. 2018;5:370–8.

    PubMed  Google Scholar 

  • Manning KE, Tait R, Suckling J, Holland AJ. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults. NeuroImage Clin. 2018;17:899–909.

    PubMed  Google Scholar 

  • Kates WR, Burnette CP, Bessette BA, Folley BS, Strunge L, Jabs EW, et al. Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2). J Child Neurol. 2004;19:337–42.

    PubMed  Google Scholar 

  • Antshel KM, Fremont W, Kates WR. The neurocognitive phenotype in velo-cardio-facial syndrome: a developmental perspective. Dev Disabilities Res Rev. 2008;14:43–51.

    Google Scholar 

  • Kates WR, Antshel K, Willhite R, Bessette BA, AbdulSabur N, Higgins AM. Gender-moderated dorsolateral prefrontal reductions in 22q11.2 Deletion Syndrome: implications for risk for schizophrenia. Child Neuropsychol. 2005;11:73–85.

    PubMed  Google Scholar 

  • Tripathi A, Spedding M, Schenker E, Didriksen M, Cressant A, Jay TM. Cognition- and circuit-based dysfunction in a mouse model of 22q11.2 microdeletion syndrome: effects of stress. Transl Psychiatry. 2020;10:41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gudbrandsen M, Daly E, Murphy CM, Blackmore CE, Rogdaki M, Mann C, et al. Brain morphometry in 22q11.2 deletion syndrome: an exploration of differences in cortical thickness, surface area, and their contribution to cortical volume. Sci Rep. 2020;10:18845.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogdaki M, Gudbrandsen M, McCutcheon RA, Blackmore CE, Brugger S, Ecker C, et al. Magnitude and heterogeneity of brain structural abnormalities in 22q11.2 deletion syndrome: a meta-analysis. Mol Psychiatry. 2020;25:1704–17.

  • Nyaradi A, Foster JK, Hickling S, Li J, Ambrosini GL, Jacques A, et al. Prospective associations between dietary patterns and cognitive performance during adolescence. J Child Psychol Psychiatry Allied Discip. 2014;55:1017–24.

    Google Scholar 

  • Maayan L, Hoogendoorn C, Sweat V, Convit A. Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity. 2011;19:1382–7.

    PubMed  Google Scholar 

  • Nyaradi A, Oddy WH, Hickling S, Li J, Foster JK. The relationship between nutrition in infancy and cognitive performance during adolescence. Front Nutr. 2015;2:2.

    PubMed  PubMed Central  Google Scholar 

  • Rincel M, Lepinay AL, Delage P, Fioramonti J, Theodorou VS, Laye S, et al. Maternal high-fat diet prevents developmental programming by early-life stress. Transl Psychiatry. 2016;6:e966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bronson SL, Chan JC, Bale TL. Sex-specific neurodevelopmental programming by placental insulin receptors on stress reactivity and sensorimotor gating. Biol Psychiatry. 2017;82:127–38.

    CAS  PubMed  Google Scholar 

  • Nousen EK, Franco JG, Sullivan EL. Unraveling the mechanisms responsible for the comorbidity between metabolic syndrome and mental health disorders. Neuroendocrinology. 2013;98:254–66.

    CAS  PubMed  Google Scholar 

  • Rivell A, Mattson MP. Intergenerational Metabolic Syndrome and Neuronal Network Hyperexcitability in Autism. Trends Neurosci. 2019;42:709–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coles CD, Kalberg W, Kable JA, Tabachnick B, May PA, Chambers CD. Characterizing alcohol-related neurodevelopmental disorder: prenatal alcohol exposure and the spectrum of outcomes. Alcohol Clin Exp Res. 2020;44:1245–60.

    CAS  PubMed  Google Scholar 

  • Kable JA, Coles CD, Mattson SN. Neurodevelopmental outcomes associated with prefrontal cortical deoxygenation in children with fetal alcohol spectrum disorders. Dev Neuropsychol. 2020;45:1–16.

    PubMed  PubMed Central  Google Scholar 

  • Tang S, Xu S, Waddell J, Zhu W, Gullapalli RP, Mooney SM. Functional connectivity and metabolic alterations in medial prefrontal cortex in a rat model of fetal alcohol spectrum disorder: a resting-state functional magnetic resonance imaging and in vivo proton magnetic resonance spectroscopy study. Dev Neurosci. 2019;41:67–78.

    CAS  PubMed  Google Scholar 

  • Wang X, Cuzon Carlson VC, Studholme C, Newman N, Ford MM, Grant KA, et al. In utero MRI identifies consequences of early-gestation alcohol drinking on fetal brain development in rhesus macaques. Proc Natl Acad Sci USA. 2020;117:10035–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorput AG, Gupta VP, Yeh PW, Yeh HH. Persistent interneuronopathy in the prefrontal cortex of young adult offspring exposed to ethanol in utero. J Neurosci. 2015;35:10977–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorput AG, Yeh HH. Effects of ethanol exposure in utero on Cajal-Retzius cells in the developing cortex. Alcohol Clin Exp Res. 2015;39:853–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorput AG, Yeh HH. Chronic gestational exposure to ethanol leads to enduring aberrances in cortical form and function in the medial prefrontal cortex. Alcohol Clin Exp Res. 2016;40:1479–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nygaard E, Slinning K, Moe V, Due-Tonnessen P, Fjell A, Walhovd KB. Neuroanatomical characteristics of youths with prenatal opioid and poly-drug exposure. Neurotoxicol Teratol. 2018;68:13–26.

    CAS  PubMed  Google Scholar 

  • Bhide PG. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin Cell Dev Biol. 2009;20:395–402.

    CAS  PubMed  Google Scholar 

  • Kubrusly RC, Bhide PG. Cocaine exposure modulates dopamine and adenosine signaling in the fetal brain. Neuropharmacology. 2010;58:436–43.

    CAS  PubMed  Google Scholar 

  • Stanwood GD, Levitt P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr Opin Pharmacol. 2004;4:65–71.

    CAS  PubMed  Google Scholar 

  • Cisler JM, Elton A, Kennedy AP, Young J, Smitherman S, Andrew James G, et al. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction. Psychiatry Res. 2013;213:39–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Santhanam P, Coles CD, Ellen Lynch M, Hamann S, Peltier S, et al. Prenatal cocaine exposure alters functional activation in the ventral prefrontal cortex and its structural connectivity with the amygdala. Psychiatry Res. 2013;213:47–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grewen K, Burchinal M, Vachet C, Gouttard S, Gilmore JH, Lin W, et al. Prenatal cocaine effects on brain structure in early infancy. NeuroImage. 2014;101:114–23.

    CAS  PubMed  Google Scholar 

  • Salzwedel AP, Grewen KM, Vachet C, Gerig G, Lin W, Gao W. Prenatal drug exposure affects neonatal brain functional connectivity. J Neurosci. 2015;35:5860–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomason ME, Hect JL, Rauh VA, Trentacosta C, Wheelock MD, Eggebrecht AT, et al. Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human fetal brain. NeuroImage. 2019;191:186–92.

    CAS  PubMed  Google Scholar 

  • Kougias DG, Sellinger EP, Willing J, Juraska JM. Perinatal exposure to an environmentally relevant mixture of phthalates results in a lower number of neurons and synapses in the medial prefrontal cortex and decreased cognitive flexibility in adult male and female rats. J Neurosci. 2018;38:6864–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward NC, Haghani A, Johnson RG, Hsu TM, Saffari A, Sioutas C, et al. Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Transl Psychiatry. 2018;8:261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: a systematic review. Environ Res. 2015;142:51–60.

    CAS  PubMed  Google Scholar 

  • van de Wijer L, Garcia LP, Hanswijk SI, Rando J, Middelman A, Ter Heine R, et al. Neurodevelopmental and behavioral consequences of perinatal exposure to the HIV drug efavirenz in a rodent model. Transl Psychiatry. 2019;9:84.

    PubMed  PubMed Central  Google Scholar 

  • Garcia LP, Van de Wijer L, Hanswijk SI, Rando J, Witteveen JS, Middelman A, et al. Perinatal exposure of rats to the HIV drug efavirenz affects medial prefrontal cortex cytoarchitecture. Biochemical Pharmacol. 2020;178:114050.

    CAS  Google Scholar 

  • Stegmann BJ, Carey JC. TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Curr Women’s Health Rep. 2002;2:253–8.

    Google Scholar 

  • Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951–8.

    CAS  PubMed  Google Scholar 

  • Rubin EJ, Greene MF, Baden LR. Zika virus and microcephaly. N Engl J Med. 2016;374:984–5.

    PubMed  Google Scholar 

  • Molnar Z, Kennedy S. Neurodevelopmental disorders: risks of Zika virus during the first trimester of pregnancy. Nat Rev Neurol. 2016;12:315–6.

    CAS  PubMed  Google Scholar 

  • Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N, Li M, et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 2016;16:2576–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 2016;19:120–6.

    CAS  PubMed  Google Scholar 

  • Wu KY, Zuo GL, Li XF, Ye Q, Deng YQ, Huang XY, et al. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res. 2016;26:645–54.

    PubMed  PubMed Central  Google Scholar 

  • Raper J, Kovacs-Balint Z, Mavigner M, Gumber S, Burke MW, Habib J, et al. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat Commun. 2020;11:2534.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC, et al. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine. 2020;25:100484.

    PubMed  PubMed Central  Google Scholar 

  • Egbert AR, Cankurtaran S, Karpiak S. Brain abnormalities in COVID-19 acute/subacute phase: a rapid systematic review. Brain Behav Immun. 2020;89:543–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kas A, Soret M, Pyatigoskaya N, Habert MO, Hesters A, Le Guennec L, et al. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging. 2021;1–15.

  • Lopez-Diaz A, Ayesa-Arriola R, Crespo-Facorro B, Ruiz-Veguilla M. COVID-19 infection during pregnancy and risk of neurodevelopmental disorders in offspring: time for collaborative research. Biol Psychiatry. 2021;89:e29–e30.

    CAS  PubMed  Google Scholar 

  • Abbott A. Neuroscience: the brain, interrupted. Nature. 2015;518:24–6.

    CAS  PubMed  Google Scholar 

  • Komitova M, Xenos D, Salmaso N, Tran KM, Brand T, Schwartz ML, et al. Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J Neurosci. 2013;33:13375–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagel DM, Ganat Y, Cheng E, Silbereis J, Ohkubo Y, Ment LR, et al. Fgfr1 is required for cortical regeneration and repair after perinatal hypoxia. J Neurosci. 2009;29:1202–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delcour M, Russier M, Amin M, Baud O, Paban V, Barbe MF, et al. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res. 2012;232:233–44.

    PubMed  Google Scholar 

  • Lefevre J, Germanaud D, Dubois J, Rousseau F, de Macedo Santos I, Angleys H, et al. Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb Cortex. 2016;26:3023–35.

    PubMed  Google Scholar 

  • Ang ES Jr., Gluncic V, Duque A, Schafer ME, Rakic P. Prenatal exposure to ultrasound waves impacts neuronal migration in mice. Proc Natl Acad Sci USA. 2006;103:12903–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Ceritoglu C, Ratnanather JT, Wang L, Harms MP, Aldridge K, et al. Distinct abnormalities of the primate prefrontal cortex caused by ionizing radiation in early or midgestation. J Comp Neurol. 2013;521:1040–53.

    PubMed  PubMed Central  Google Scholar 

  • Kovalchuk A, Kolb B. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle. 2017;16:1266–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APA, Miguel PM, et al. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav. 2019;204:336–46.

    CAS  PubMed  Google Scholar 

  • Alves MB, Dalle Molle R, Desai M, Ross MG, Silveira PP. Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens. Behav Brain Res. 2015;287:73–81.

    CAS  PubMed  Google Scholar 

  • Vlassaks E, Gavilanes AW, Vles JS, Deville S, Kramer BW, Strackx E, et al. The effects of fetal and perinatal asphyxia on neuronal cytokine levels and ceramide metabolism in adulthood. J Neuroimmunol. 2013;255:97–101.

    CAS  PubMed  Google Scholar 

  • Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825.

    PubMed  PubMed Central  Google Scholar 

  • Allin M, Henderson M, Suckling J, Nosarti C, Rushe T, Fearon P, et al. Effects of very low birthweight on brain structure in adulthood. Dev Med Child Neurol. 2004;46:46–53.

    PubMed  Google Scholar 

  • Bjuland KJ, Lohaugen GC, Martinussen M, Skranes J. Cortical thickness and cognition in very-low-birth-weight late teenagers. Early Hum Dev. 2013;89:371–80.

    PubMed  Google Scholar 

  • Skranes J, Lohaugen GC, Martinussen M, Haberg A, Brubakk AM, Dale AM. Cortical surface area and IQ in very-low-birth-weight (VLBW) young adults. Cortex A J Devoted Study Nerv Syst Behav. 2013;49:2264–71.

    Google Scholar 

  • Nosarti C, Nam KW, Walshe M, Murray RM, Cuddy M, Rifkin L, et al. Preterm birth and structural brain alterations in early adulthood. NeuroImage Clin. 2014;6:180–91.

    PubMed  PubMed Central  Google Scholar 

  • Tokariev A, Stjerna S, Lano A, Metsaranta M, Palva JM, Vanhatalo S. Preterm birth changes networks of newborn cortical activity. Cereb Cortex. 2019;29:814–26.

    PubMed  Google Scholar 

  • Leikos S, Tokariev A, Koolen N, Nevalainen P, Vanhatalo S. Cortical responses to tactile stimuli in preterm infants. Eur J Neurosci. 2020;51:1059–73.

    PubMed  Google Scholar 

  • Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155:997–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zikopoulos B, Barbas H. Changes in prefrontal axons may disrupt the network in autism. J Neurosci. 2010;30:14595–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ariza J, Rogers H, Hashemi E, Noctor SC, Martinez-Cerdeno V. The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cereb Cortex. 2018;28:411–20.

    PubMed  Google Scholar 

  • Hashemi E, Ariza J, Rogers H, Noctor SC, Martinez-Cerdeno V. The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex. 2018;28:690.

    PubMed  Google Scholar 

  • Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306:2001–10.

    CAS  PubMed  Google Scholar 

  • Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014;267:1–10.

    CAS  PubMed  Google Scholar 

  • Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, et al. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013;5:738–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solso S, Xu R, Proudfoot J, Hagler DJ Jr, Campbell K, Venkatraman V, et al. Diffusion tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol Psychiatry. 2016;79:676–84.

    PubMed  Google Scholar 

  • Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.

    CAS  PubMed  Google Scholar 

  • Petanjek Z, Sedmak D, Dzaja D, Hladnik A, Rasin MR, Jovanov-Milosevic N. The protracted maturation of associative layer IIIC pyramidal neurons in the human prefrontal cortex during childhood: a major role in cognitive development and selective alteration in autism. Front Psychiatry. 2019;10:122.

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Cabezas MA, Barbas H, Zikopoulos B. Parallel development of chromatin patterns, neuron morphology, and connections: potential for disruption in autism. Front Neuroanat. 2018;12:70.

    PubMed  PubMed Central  Google Scholar 

  • Zikopoulos B, Liu X, Tepe J, Trutzer I, John YJ, Barbas H. Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathologica. 2018;136:759–78.

    PubMed  PubMed Central  Google Scholar 

  • Kurochkin I, Khrameeva E, Tkachev A, Stepanova V, Vanyushkina A, Stekolshchikova E, et al. Metabolome signature of autism in the human prefrontal cortex. Commun Biol. 2019;2:234.

    PubMed  PubMed Central  Google Scholar 

  • Ambrosino S, de Zeeuw P, Wierenga LM, van Dijk S, Durston S. What can cortical development in attention-deficit/hyperactivity disorder teach us about the early developmental mechanisms involved? Cereb Cortex. 2017;27:4624–34.

    PubMed  Google Scholar 

  • Arnsten AF. The emerging neurobiology of attention deficit hyperactivity disorder: the key role of the prefrontal association cortex. J Pediatrics. 2009;154:I–S43.

    Google Scholar 

  • Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63:540–9.

    PubMed  Google Scholar 

  • Shaw P, Rabin C. New insights into attention-deficit/hyperactivity disorder using structural neuroimaging. Curr Psychiatry Rep. 2009;11:393–8.

    PubMed  Google Scholar 

  • Neyens LG, Aldenkamp AP, Meinardi HM. Prospective follow-up of intellectual development in children with a recent onset of epilepsy. Epilepsy Res. 1999;34:85–90.

    CAS  PubMed  Google Scholar 

  • Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17:101–16.

    PubMed  PubMed Central  Google Scholar 

  • Korman B, Krsek P, Duchowny M, Maton B, Pacheco-Jacome E, Rey G. Early seizure onset and dysplastic lesion extent independently disrupt cognitive networks. Neurology. 2013;81:745–51.

    PubMed  Google Scholar 

  • Hernan AE, Alexander A, Jenks KR, Barry J, Lenck-Santini PP, Isaeva E, et al. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol Dis. 2014;63:25–34.

    PubMed  Google Scholar 

  • Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini PP. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J Neurosci. 2011;31:15397–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleen JK, Sesque A, Wu EX, Miller FA, Hernan AE, Holmes GL, et al. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2011;22:214–9.

    PubMed  PubMed Central  Google Scholar 

  • Hernan AE, Holmes GL, Isaev D, Scott RC, Isaeva E. Altered short-term plasticity in the prefrontal cortex after early life seizures. Neurobiol Dis. 2013;50:120–6.

    CAS  PubMed  Google Scholar 

  • Kaindl AM, Asimiadou S, Manthey D, Hagen MV, Turski L, Ikonomidou C. Antiepileptic drugs and the developing brain. Cell Mol life Sci. 2006;63:399–413.

    CAS  PubMed  Google Scholar 

  • Veroniki AA, Cogo E, Rios P, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety of anti-epileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med. 2017;15:95.

    PubMed  PubMed Central  Google Scholar 

  • Veroniki AA, Rios P, Cogo E, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: a systematic review and network meta-analysis. BMJ Open. 2017;7:e017248.

    PubMed  PubMed Central  Google Scholar 

  • Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature. 2018;555:524–8.

    CAS  PubMed  Google Scholar 

  • Kovacs-Balint ZA, Payne C, Steele J, Li L, Styner M, Bachevalier J, et al. Structural development of cortical lobes during the first 6 months of life in infant macaques. Developmental Cogn Neurosci. 2021;48:100906.

    CAS  Google Scholar 

  • Silver DL, Rakic P, Grove EA, Haydar TF, Hensch TK, Huttner WB, et al. “Evolution and Ontogenetic Development of Cortical Structures” In Singer W, Sejnowski TJ, Rakic P. editors. The Neocortex, pp. 61–93. Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor. Cambridge, MA: MIT Press. 2019.

  • What part of the brain thickens in adolescence?

    The corpus callosum - integrating logic and creativity During adolescence it steadily thickens and stronger links also develop between the hippocampus (a sort of memory directory) and frontal areas that set goals and weigh different agendas.

    Which part of the brain do teenagers use more than adults to process information?

    Because the prefrontal cortex is still developing, teenagers might rely on a part of the brain called the amygdala to make decisions and solve problems more than adults do. The amygdala is associated with emotions, impulses, aggression and instinctive behaviour.

    What happens when the corpus callosum thickens in adolescence?

    The corpus callosum, which connects the two hemispheres, continues to thicken allowing for stronger connections between brain areas. Additionally, the hippocampus becomes more strongly connected to the frontal lobes, allowing for greater integration of memory and experiences into our decision making.

    What parts of the brain have an effect on adolescence and how they develop?

    Subcortical brain areas, especially the limbic system and the reward system, develop earlier, so that there is an imbalance during adolescence between the more mature subcortical areas and less mature prefrontal areas. This may account for typical adolescent behavior patterns, including risk-taking.