Bài tập về giới hạn hàm số dạng vô định năm 2024

Tài liệu gồm 154 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề giới hạn và liên tục, giúp học sinh lớp 11 tham khảo khi học sinh trình Đại số và Giải tích 11 chương 4.

BÀI 1. GIỚI HẠN CỦA DÃY SỐ.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn L = lim P(n)/Q(n) với P(n), Q(n) là các đa thức. Dạng 2. Tính giới hạn dạng L = lim P(n)/Q(n) với P(n), Q(n) là các hàm mũ an. Dạng 3. Tính giới hạn của dãy số chứa căn thức.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 2. GIỚI HẠN CỦA HÀM SỐ.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức là các đa thức. Dạng 2. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức có chứa căn thức. Dạng 3. Giới hạn của hàm số khi x tiến đến vô cực. Dạng 4. Giới hạn một bên x tiến đến x0+ hoặc x tiến đến x0-. Dạng 5. Giới hạn của hàm số lượng giác.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 3. HÀM SỐ LIÊN TỤC.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên tập xác định. Dạng 3. Chứng minh phương trình có nghiệm.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 4. ÔN TẬP CHƯƠNG IV.

  • Giới Hạn - Hàm Số Liên Tục

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Tính \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 0\), trong đó \(f\left( x \right),g\left( x \right)\) là các đa thức hoặc căn thức.

Phương pháp:

- Bước 1: Phân tích tử và mẫu thành tích các nhân tử.

- Bước 2: Chia cả tử và mẫu cho nhân tử chung của tử và mẫu.

- Bước 3: Tính giới hạn theo cách thông thường.

Nếu \(f\left( x \right)\) và \(g\left( x \right)\) có chứa căn thức thì có thể nhân cả tử và mẫu với biểu thức liên hợp trước khi phân tích chúng thành tích và giản ước.

Đặc biệt:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

Ví dụ: $\mathop {\lim }\limits_{x \to 2} \dfrac{{x - 2}}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{x - 2}}{{\left( {x - 2} \right)\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x - 1}} = \dfrac{1}{{2 - 1}} = 1$

2. Dạng vô định \(\dfrac{\infty }{\infty }\)

Bài toán: Tính \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) khi \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \pm \infty } g\left( x \right) = \pm \infty \), trong đó \(f\left( x \right),g\left( x \right)\) là các đa thức.

Phương pháp:

- Bước 1: Đặt lũy thừa bậc cao nhất của tử và mẫu ra làm nhân tử chung.

- Bước 2: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của \(x\).

- Bước 3: Tính các giới hạn thông thường và suy ra kết quả.

Ví dụ: \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} - 1} }}{{2x}} \) \(= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2}\left( {1 - \dfrac{1}{{{x^2}}}} \right)} }}{{2x}} \) \(= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left| x \right|\sqrt {1 - \dfrac{1}{{{x^2}}}} }}{{2x}} \) \(= \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - x\sqrt {1 - \dfrac{1}{{{x^2}}}} }}{{2x}} = - \dfrac{1}{2}\)

Bài tập về giới hạn hàm số dạng vô định năm 2024

Cần xét xem \(x \to + \infty ,x \to - \infty \) khi khai căn biểu thức có chứa căn bậc hai.

3. Dạng vô định \(0.\infty \)

Bài toán: Tính giới hạn $\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right]$ khi $\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 0$ và $\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \pm \infty $.

Phương pháp:

- Bước 1: Biến đổi $\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right)}}{{\dfrac{1}{{g\left( x \right)}}}}$ để đưa về dạng \(\dfrac{0}{0}\) hoặc $\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{g\left( x \right)}}{{\dfrac{1}{{f\left( x \right)}}}}$ để đưa về dạng \(\dfrac{\infty }{\infty }\).

- Bước 2: Sử dụng các phương pháp của dạng 1 và 2 để tính tiếp giới hạn.

4. Dạng vô định \(\infty - \infty \)

Bài toán: Tính \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right]\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = + \infty ,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = + \infty \) hoặc tính \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right]\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = + \infty ,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = - \infty \).

Phương pháp:

- Bước 1: Nhận hoặc chia với biểu thức liên hợp (nếu có căn thức) hoặc quy đồng để đưa về cùng một phân thức.