Cho môđun tìm tập nghiệm là hình gì năm 2024

Ảnh đẹp,18,Bài giảng điện tử,10,Bạn đọc viết,225,Bất đẳng thức,75,Bđt Nesbitt,3,Bổ đề cơ bản,9,Bồi dưỡng học sinh giỏi,41,Cabri 3D,2,Các nhà Toán học,129,Câu đố Toán học,83,Câu đối,3,Cấu trúc đề thi,15,Chỉ số thông minh,4,Chuyên đề Toán,289,congthuctoan,9,Công thức Thể tích,11,Công thức Toán,112,Cười nghiêng ngả,31,Danh bạ website,1,Dạy con,8,Dạy học Toán,279,Dạy học trực tuyến,20,Dựng hình,5,Đánh giá năng lực,1,Đạo hàm,17,Đề cương ôn tập,39,Đề kiểm tra 1 tiết,29,Đề thi - đáp án,986,Đề thi Cao đẳng,15,Đề thi Cao học,7,Đề thi Đại học,159,Đề thi giữa kì,20,Đề thi học kì,134,Đề thi học sinh giỏi,128,Đề thi THỬ Đại học,401,Đề thi thử môn Toán,65,Đề thi Tốt nghiệp,46,Đề tuyển sinh lớp 10,100,Điểm sàn Đại học,5,Điểm thi - điểm chuẩn,221,Đọc báo giúp bạn,13,Epsilon,9,File word Toán,35,Giải bài tập SGK,16,Giải chi tiết,196,Giải Nobel,1,Giải thưởng FIELDS,24,Giải thưởng Lê Văn Thiêm,4,Giải thưởng Toán học,5,Giải tích,29,Giải trí Toán học,170,Giáo án điện tử,11,Giáo án Hóa học,2,Giáo án Toán,18,Giáo án Vật Lý,3,Giáo dục,363,Giáo trình - Sách,81,Giới hạn,20,GS Hoàng Tụy,8,GSP,6,Gương sáng,208,Hằng số Toán học,19,Hình gây ảo giác,9,Hình học không gian,108,Hình học phẳng,91,Học bổng - du học,12,IMO,13,Khái niệm Toán học,66,Khảo sát hàm số,36,Kí hiệu Toán học,13,LaTex,12,Lịch sử Toán học,81,Linh tinh,7,Logic,11,Luận văn,1,Luyện thi Đại học,231,Lượng giác,57,Lương giáo viên,3,Ma trận đề thi,7,MathType,7,McMix,2,McMix bản quyền,3,McMix Pro,3,McMix-Pro,3,Microsoft phỏng vấn,11,MTBT Casio,28,Mũ và Logarit,38,MYTS,8,Nghịch lí Toán học,11,Ngô Bảo Châu,49,Nhiều cách giải,36,Những câu chuyện về Toán,15,OLP-VTV,33,Olympiad,308,Ôn thi vào lớp 10,3,Perelman,8,Ph.D.Dong books,7,Phần mềm Toán,26,Phân phối chương trình,8,Phụ cấp thâm niên,3,Phương trình hàm,4,Sách giáo viên,15,Sách Giấy,11,Sai lầm ở đâu?,13,Sáng kiến kinh nghiệm,8,SGK Mới,24,Số học,57,Số phức,34,Sổ tay Toán học,4,Tạp chí Toán học,38,TestPro Font,1,Thiên tài,95,Thống kê,2,Thơ - nhạc,9,Thủ thuật BLOG,14,Thuật toán,3,Thư,2,Tích phân,79,Tính chất cơ bản,15,Toán 10,149,Toán 11,179,Toán 12,392,Toán 9,67,Toán Cao cấp,26,Toán học Tuổi trẻ,26,Toán học - thực tiễn,100,Toán học Việt Nam,29,Toán THCS,22,Toán Tiểu học,5,toanthcs,6,Tổ hợp,39,Trắc nghiệm Toán,222,TSTHO,5,TTT12O,1,Tuyển dụng,11,Tuyển sinh,272,Tuyển sinh lớp 6,8,Tỷ lệ chọi Đại học,6,Vật Lý,24,Vẻ đẹp Toán học,109,Vũ Hà Văn,2,Xác suất,28,

Số phức được sử dụng trong nhiều lĩnh vực khoa học, như khoa học kỹ thuật, điện từ học, cơ học lượng tử, toán học ứng dụng chẳng hạn như trong lý thuyết hỗn loạn. Nhà toán học người Ý Gerolamo Cardano là người đầu tiên đưa ra số phức. Ông sử dụng số phức để giải các phương trình bậc ba trong thế kỉ 16.

Lịch sử[sửa | sửa mã nguồn]

Nhà toán học người Ý R. Bombelli (1526-1573) đã đưa định nghĩa đầu tiên về số phức, lúc đó được gọi là số "không thể có" hoặc "số ảo" trong công trình Đại số (Bologne, 1572) công bố ít lâu trước khi ông mất. Ông đã định nghĩa các số đó (số phức) khi nghiên cứu các phương trình bậc ba và đã đưa ra căn bậc hai của .

Nhà toán học người Pháp D’Alembert vào năm 1746 đã xác định được dạng tổng quát "" của chúng, đồng thời chấp nhận nguyên lý tồn tại n nghiệm của một phương trình bậc n. Nhà toán học Thụy Sĩ L. Euler (1707-1783) đã đưa ra ký hiệu "" để chỉ căn bậc hai của , năm 1801 Gauss đã dùng lại ký hiệu này.

Tổng quan[sửa | sửa mã nguồn]

Số phức cho phép giải một phương trình nhất định mà không giải được trong trường số thực. Ví dụ, phương trình

không có nghiệm thực, vì bình phương của một số thực không thể âm. Các số phức cho phép giải phương trình này. Ý tưởng là mở rộng trường số thực sang đơn vị ảo với , vì vậy phương trình trên được giải. Trong trường hợp này các nghiệm là −1 + 3i và −1 − 3i, có thể kiểm tra lại nghiệm khi thế vào phương trình và với :

Thực tế không chỉ các phương trình bậc hai mà tất cả các phương trình đại số có hệ số thực hoặc số ảo với một biến số có thể giải bằng số phức.

Định nghĩa[sửa | sửa mã nguồn]

Số phức được biểu diễn dưới dạng , với a và b là các số thực và là đơn vị ảo, thỏa mãn điều kiện . Ví dụ là một số phức.

Số thực a được gọi là phần thực của ; số thực b được gọi là phần ảo của . Theo đó, phần ảo không có chứa đơn vị ảo: do đó b, không phải bi, là phần ảo. Phần thực của số phức z được ký hiệu là Re(z) hay ℜ(z); phần ảo của phức z được ký hiệu là Im(z) hay ℑ(z). Ví dụ:

Do đó, nếu xét theo phần thực và phần ảo, một số phức z sẽ được viết là . Biểu thức này đôi khi được gọi là dạng Cartesi của z.

Một số thực a có thể được biểu diễn ở dạng phức là với phần ảo là 0. Số thuần ảo là một số phức được viết là với phần thực bằng 0. Ngoài ra, khi phần ảo âm, nó được viết là với thay vì , ví dụ thay vì .

Tập hợp tất cả các số phức hay trường số phức được ký hiệu là ℂ, hay . Có nhiều phương pháp xây dựng trường số phức một cách chặt chẽ bằng phương pháp tiên đề.

Gọi là trường số thực. Ký hiệu là tập hợp các cặp (a,b) với .

Trong , định nghĩa hai phép cộng và phép nhân như sau:

thì là một trường (xem cấu trúc đại số).

Ta có thể lập một đơn ánh từ tập số thực vào bằng cách cho mỗi số thực a ứng với cặp . Khi đó ... Nhờ phép nhúng, ta đồng nhất tập các số thực với tập con các số phức dạng , khi đó tập các số thực là tập con của tập các số phức và được xem là một mở rộng của .

Ký hiệu là cặp (0,1) . Ta có

.

Tất cả các số phức dạng được gọi là các số thuần ảo.

Một số khái niệm quan trọng trong trường số phức[sửa | sửa mã nguồn]

Dạng đại số của số phức[sửa | sửa mã nguồn]

Trong trường số phức, tính chất của đơn vị ảo đặc trưng bởi biểu thức

Mỗi số phức z đều được biểu diễn duy nhất dưới dạng:

trong đó a, b là các số thực. Dạng biểu diễn này được gọi là dạng đại số của số phức z.

Với cách biểu diễn dưới dạng đại số, phép cộng và nhân các số phức được thực hiện như phép cộng và nhân các nhị thức bậc nhất với lưu ý rằng . Như vậy, ta có:

Mặt phẳng phức[sửa | sửa mã nguồn]

Cho môđun tìm tập nghiệm là hình gì năm 2024

Trong hệ toạ độ Descartes, có thể dùng trục hoành chỉ tọa độ phần thực còn trục tung cho tọa độ phần ảo để biểu diễn một số phức

Khi đó mặt phẳng tọa độ được gọi là mặt phẳng phức.

Số thực và số thuần ảo[sửa | sửa mã nguồn]

Mỗi số thực được xem là một số phức có .

Ta có:

Nếu , số phức được gọi là thuần ảo.

Số phức liên hợp[sửa | sửa mã nguồn]

Cho số phức dưới dạng đại số , số phức được gọi là số phức liên hợp của z.

Một số tính chất của số phức liên hợp:

  1. là một số thực.
  2. là một số thực
  3. \=
  4. \=

Module và Argument[sửa | sửa mã nguồn]

Xem thêm: giá trị tuyệt đối

Dạng lượng giác của số phức[sửa | sửa mã nguồn]

Định nghĩa[sửa | sửa mã nguồn]

Số phức có thể viết dưới dạng

Khi đặt

,

ta có

Cách biểu diễn này được gọi là dạng lượng giác của số phức .

Phép toán trên các số phức viết dưới dạng lượng giác[sửa | sửa mã nguồn]

  • Phép nhân và phép chia các số phức dưới dạng lượng giác

Cho hai số phức dưới dạng lượng giác

Khi đó

  • Lũy thừa tự nhiên của số phức dưới dạng lượng giác (công thức Moirve).
  • Khai căn số phức dưới dạng lượng giác.

Mọi số phức z khác 0 đều có đúng n căn bậc n, là các số dạng

trong đó ,

Một số ứng dụng[sửa | sửa mã nguồn]

Các tập hợp số[sửa | sửa mã nguồn]

Cho môđun tìm tập nghiệm là hình gì năm 2024
Các tập hợp số: Tập hợp số tự nhiên: Tập hợp số nguyên: Tập hợp số hữu tỉ: Tập hợp số vô tỉ: Tập hợp số thực: Tập hợp số phức

Xem thêm[sửa | sửa mã nguồn]

  • Hình học phức
  • Mặt cầu Riemann (mặt phẳng phức mở rộng)
  • Giải tích phức
  • Số siêu phức
  • Số nguyên Gauss
  • Căn bậc hai
  • Công thức Euler

Chú thích[sửa | sửa mã nguồn]

  • Charles P. McKeague (2011). . Brooks/Cole. tr. 524. ISBN 978-0-8400-6421-9.
  • , tr. 294) Complex Variables (2nd Edition), M.R. Spiegel, S. Lipschutz, J.J. Schiller, D. Spellman, Schaum's Outline Series, Mc Graw Hill (USA), ISBN 978-0-07-161569-3