Đề bài - bài 6.3 phần bài tập bổ sung trang 106 sbt toán 9 tập 2

Ta có \(ABC\) cho trước nên điểm \(P\) cố định nên \(BM + MN + NP\) ngắn nhất khi \(4\) điểm \(B, M, N, P\) thẳng hàng.

Đề bài

Cho tam giác \(ABC\) có ba góc nhọn. Xác định vị trí của điểm \(M\) trong tam giác sao cho \(MA + MB + MC\) nhỏ nhất.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong tam giác đều, mỗi góc đều bằng \(60^\circ.\)

+) Chứng minh ba điểm thẳng hàng: Nếu \( \widehat{ABD}+\widehat{DBC}=180^\circ\) thì \(A,B,C\) thẳng hàng.

Lời giải chi tiết

Đề bài - bài 6.3 phần bài tập bổ sung trang 106 sbt toán 9 tập 2
Đề bài - bài 6.3 phần bài tập bổ sung trang 106 sbt toán 9 tập 2

Trong \(ABC\) ta lấy điểm \(M.\) Nối \(MA, MB, MC.\)

Ta cần làm xuất hiện tổng \(MA + MB + MC\) sau đó tìm điều kiện để tổng đó nhỏ nhất.

Lấy \(MC\) làm cạnh dựng trên nửa mặt phẳng bờ \(BC\) chứa điểm \(A\) tam giác đều \(MCN.\) Suy ra: \(CM = MN.\)

Lấy \(AC\) làm cạnh dựng trên nửa mặt phẳng bờ \(AC\) không chứa điểm \(B\) tam giác đều \(APC.\)

Ta có:

\(\widehat {MCA} + \widehat {ACN} = \widehat {MCN}=60^\circ \)

\(\widehat {ACN} + \widehat {NCP} =\widehat {ACP}= 60^\circ \)

\( \Rightarrow \widehat {MCA} = \widehat {NCP}\)

Xét \(AMC\) và \(PNC:\)

+) \(CM = CN\) (vì \(MCN\) đều)

+) \(\widehat {MCA} = \widehat {NCP}\) (chứng minh trên)

+) \( CA = CP\) (vì \(APC\) đều)

Suy ra: \(AMC = PNC\;\; (c.g.c)\)

\( \Rightarrow PN = AM\)

\( MA + MB + MC = NP + MB + MN\)

Ta có \(ABC\) cho trước nên điểm \(P\) cố định nên \(BM + MN + NP\) ngắn nhất khi \(4\) điểm \(B, M, N, P\) thẳng hàng.

Vì \(\widehat {CMN} = 60^\circ \) nên \(3\) điểm \(B, M, N\) thẳng hàng khi và chỉ khi \(\widehat {BMC} = 120^\circ \)

Vì \(\widehat {CNM} = 60^\circ \) nên \(3\) điểm \(M, N, P\) thẳng hàng khi và chỉ khi \(\widehat {CNP} = 120^\circ \)

Mà \(AMC = PNC\) (chứng minh trên) \( \Rightarrow \widehat {AMC} = \widehat {PNC} = 120^\circ \)

Vậy \(MA + MB + MC\) bé nhất khi và chỉ khi \(\widehat {BMC} = 120^\circ \) và \(\widehat {AMC} = 120^\circ \)

Vậy \(M\) là giao điểm của \(2\) cung chứa góc \(120^\circ \) dựng trên \(BC\) và \(AC.\)